

Calibration Manual

PN 686540 January 1998 Rev. 8, 3/06 © 1998-2006 Fluke Corporation, All rights reserved. Printed in U.S.A. All product names are trademarks of their respective companies.

LIMITED WARRANTY & LIMITATION OF LIABILITY

Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service. The warranty period for the 712, 713 30G, 713 100G, 714, 715, 716, 717 1G, 717 30G, 717 100G, 717 300G, 717 500G, 717 100G, 717 500G, 717 500G, 717 100G, 717 500G, 717 500G, 717 100G, 717 500G, 717 500G, 718 1G, 718 30G, 718 100G, and 718 300G Calibrators is three years and begins on the date of shipment. The warranty period for the 718Ex Pressure Calibrator and the 718 Pump assembly is one year and begins on the date of shipment. Parts, product repairs and services are warranted for 90 days. This warranty extends only to the original buyer or end-user customer of a Fluke authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in Fluke's opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling. Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non-defective media. Fluke does not warrant that software will be error free or operate without interruption.

Fluke authorized resellers shall extend this warranty on new and unused products to end-user customers only but have no authority to extend a greater or different warranty on behalf of Fluke. Warranty support is available if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable international price. Fluke reserves the right to invoice Buyer for importation costs of repair/replacement parts when product purchased in one country is submitted for repair in another country.

Fluke's warranty obligation is limited, at Fluke's option, to refund of the purchase price, free of charge repair, or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period.

To obtain warranty service, contact your nearest Fluke authorized service center or send the product, with a description of the difficulty, postage and insurance prepaid (FOB Destination), to the nearest Fluke authorized service center. Fluke assumes no risk for damage in transit. Following warranty repair, the product will be returned to Buyer, transportation prepaid (FOB Destination). If Fluke determines that the failure was caused by misuse, alteration, accident or abnormal condition of operation or handling, Fluke will provide an estimate of repair costs and obtain authorization before commencing the work. Following repair, the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges (FOB Shipping Point).

THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

To locate an authorized service center, visit us on the World Wide Web at <u>www.fluke.com</u> or call Fluke using the phone numbers listed in this manual.

Fluke Corporation P.O. Box 9090 Everett WA 98206-9090 U.S.A Fluke Europe B.V. P.O. Box 1186 5602 B.D. Eindhoven, The Netherlands

Table of Contents

Title

Page

Introduction	1
Precautions and Safety Information	2
Explanation of International Symbols	5
Specifications	
712 Specifications	
Firmware V1.1 and Earlier	7
Firmware V1.2 through V1.9	
Firmware V2.0 and Later	
713 Specifications	
714 Specifications	
Firmware Earlier than v2.0.	
Firmware V2.0 and Later	
715 Specifications	
Firmware Earlier than V2.0.	
Firmware 2.0 and Later	
716 Specifications	
717 Specifications	
Pressure	
718 and 718Ex Specifications	
Basic Maintenance	
Cleaning	
Replacing the Battery	
718Ex Approved Batteries	
Replacing the Fuse	
Required Equipment	
Verification	
Preparing for Verification.	
712 Verification (V1.1 and Earlier) Resistance Measure Verification	27
Resistance Source Verification	
Keypad Test	
Display Verification	
712 Verification (V1.2 through V1.9)	
712 Verification (V2.0 and Later)	
713 Verification	31

Pressure Verification	31
mA Measure Verification	32
Display Verification	33
714 Verification (Earlier than V2.0)	33
Thermocouple Measure Verification	33
Thermocouple Source Verification	
Keypad Test	34
Display Verification	
714 Verification (V2.0 and Later)	
Thermocouple Measure Verification	
Thermocouple Source Verification	
715 Verification (Earlier than V2.0)	
DC Voltage Source Verification	
DC Current Source Verification	
Keypad Test	
DC Current Measure Verification	
DC Voltage Measure Verification.	
Display Verification	
715 Verification (V2.0 and Later)	
DC Voltage Source Verification	
DC Current Source Verification	40
DC Current Measure Verification	
DC Voltage Measure Verification	41
mA Measure Verification	
mA Loop Power Verification	
Sensor Jack Verification	
717 Verification	
Pressure Verification	
mA Measure Verification	
mA Loop Power Verification	46
Sensor Jack Verification	
718 and 718Ex Verification	
Pressure Verification	
Leak Test Verification	
mA Measure Verification	
mA Loop Power Verification (718 Only)	
Sensor Jack Verification	
Display Verification	50
Calibration	50
Preparing for Calibration	50
712 Calibration (V1.1 and Earlier)	50
Millivolts Measure	
Resistance Measure	51
mA Measure	
712 Calibration (V1.2 through V1.9)	
712 Calibration (V2.0 and Later)	54
OHMS INPUT	
OHMS OUTPUT Low Range	
OHMS OUTPUT High Range	
713 Calibration	
mA Measure Measure	55
Pressure Measure	
714 Calibration (Earlier than V2.0)	
Temperature Measure	
remperature measure	51

Temperature Source	57
Thermocouple Block Calibration	57
714 Calibration (V2.0 and Later)	58
mV OUTPUT	58
mV INPUT	58
CJC	59
715 Calibration (Earlier than V2.0)	59
mA/Volts Measure	59
mA/Volts Source Measure	60
715 Calibration (V2.0 and Later)	60
V INPUT	61
mV INPUT	61
mA INPUT	61
V OUTPUT	62
mV OUTPUT	62
mA OUTPUT	62
716 Calibration	63
mA Measure	63
717 Calibration (Earlier than V2.0)	63
mA Measure	63
Pressure Measure	63
717 Calibration (V2.0 and Later)	65
718 Calibration (Earlier than V2.0)	66
mA Measure	66
Pressure Measure	67
718 Calibration (V2.0 and Later)	68
718Ex Calibration	70
Replacement Parts and Accessories	72

List of Tables

Table

Title

Page

1.	International Symbols	5
2.	General Specifications	
3.	712 Supported RTD Types	7
4.	712 RTD and Ohms Simulation	
5.	712 RTD and Ohms Measurement	
6.	RTD Specifications	
7.	Ohms Specifications	9
8.	RTD Specifications	9
9.	Ohms Measurement Specifications	10
10.	Ohms Source Specifications	
11.	713 30G Pressure Input	11
12.	713 100G Pressure Input	11
13.	713 Pressure Range and Resolution	12
14.	713 30G and 713 100G DC mA Input	12
15.	714 Temperature Measure and Thermocouple Simulate	
16.	714 Millivolt Measure and Source	
17.	714 Temperature Measure and Thermocouple Simulate	
18.	714 Millivolt Measure and Source	
19.	715 DC V Input and Output	14
20.	715 DC mA Înput and Output	
21.	715 DC V Input and Output	15
22.	715 DC mA Input and Output	15
23.	716 Pressure Display, Pressure Module Input	16
24.	716 DC mA Input.	
25.	717 Pressure Specifications	17
26.	Pressure Display, Pressure Module Input	17
27.	DC mA Input	
28.	717 Range and Resolution	18
29.	Pressure Specifications	19
30.	Pressure Display, Pressure Module Input	19
31.	DC mA Input Input	
32.	718 Range and Resolution	20
33.	Verifying a Blown Fuse	23
34.	Required Calibration Equipment	
35.	712 Resistance Measure Verification	27

36.	712 Resistance Source Verification	28
37.	712 Verification RTD Values	29
38.	712 Verification Resistance Values	29
39.	712 Verification Outputs	30
40.	712 Verification RTD Values	30
41.	712 Verification Resistance Values	31
42.	712 Verification Outputs	31
43.	713 Pressure Verification	32
44.	713 mA Measure Verification	32
45.	714 Thermocouple Measure Verification	33
46.	714 Thermocouple Measure Verification (mA)	33
47.	714 Thermocouple Source Verification (mA)	34
48.	714 Thermocouple Source Verification (Temperature)	34
49.	714 Thermocouple Measure Verification	
50.	714 Thermocouple Measure Verification (mA)	35
51.	714 Thermocouple Source Verification (mA)	36
52.	714 Thermocouple Source Verification (Temperature)	36
53.	715 DC Voltage Source Verification (0.000 to 10.000 V)	37
54.	715 DC Voltage Source Verification (0.00 to 100.00 V)	37
55.	715 DC Current Source Verification	38
56.	715 DC Current Measure Verification	
57.	715 DC Voltage Measure Verification (10.0000 to 0.0000 V)	
58.	715 DC Voltage Measure Verification (0.0000 mV to 100.0000 mV)	39
59.	715 DC Voltage Source Verification (0.000 to 20.000 V)	
60.	715 DC Voltage Source Verification (0.00 to 200.00 mV)	
61.	715 DC Current Source Verification	41
62.	715 DC Current Measure Verification	41
63.	715 DC Voltage Measure Verification (25.0000 to 0.0000 V)	
64.	715 DC Voltage Measure Verification (0.0000 mV to 200.0000 mV)	42
65.	716 mA Measure Verification	
66.	717 Pressure Verification	44
67.	717 mA Measure Verification	46
68.	718 and 718Ex Pressure Verification	48
69.	718 Leak Test Verification	49
70.	718 and 718Ex mA Measure Verification	49
71.	Replaceable Parts and Accessories	72

List of Figures

Figure

Title

Page

1.	Proper Use of Tools (713, 717, 718, and 718Ex Models)	4
2.	Replacing the Battery	21
3.	Replacing the Battery (718 only)	22
4.	718Ex Battery Replacement	
5.	Replacing the Fuses (715 shown)	24
6.	Replacing the Fuse (718 shown)	25
7.	Replacement Parts (718 shown)	

Introduction

▲ ▲ Warning

The information provided in this document is for the use of qualified personnel only. Do not perform the verification tests or calibration procedures described in this manual unless you are qualified to do so.

The information in this manual deals with the 71X Series Process Calibrators (hereafter referred to as "the Calibrator" or the "71X Calibrator"). The 71X Series includes the 712, 713 30G, 713 100G, 714, 715, 716, 717 1G, 717 30G, 717 100G, 717 300G, 717 500G, 717 1000G, 717 1500G, 717 3000G, 717 5000G, 718 1G, 718 30G, 718 100G, 718 300G, and the 718Ex 30G and 718Ex 100G models.

This manual provides the following information:

- Precautions and safety information
- Specifications
- Basic maintenance (cleaning, replacing the battery and fuses)
- Verification test procedures
- Calibration and calibration adjustment procedures
- Accessories and replaceable parts

To contact Fluke, call:

USA: 1-888-99-FLUKE (1-888-993-5853) Canada: 1-800-36-FLUKE (1-800-363-5853) Europe: +31 402-675-200 Japan: +81-3-3434-0181 Singapore: +65-738-5655 Anywhere in the world: +1-425-446-5500

Or, visit Fluke's Web site at www.fluke.com.

To register this product, visit register.fluke.com

Precautions and Safety Information

Use the Calibrator only as specified in this manual. Otherwise, the protection provided by the Calibrator may be impaired.

A Warning statement identifies conditions and actions that pose hazard(s) to the user; a Caution statement identifies conditions and actions that may damage the calibrator. The following Warning and Caution statement applies to all of the 71X Calibrators unless noted:

▲ Marning

To avoid possible electric shock or personal injury:

- Use the 718Ex Calibrator only as described in the User Manual and the Fluke 718Ex CCD (Concept Control Drawing) or the protection provided by the calibrator may be impaired.
- Follow all equipment safety procedures.
- Inspect the Calibrator before use. Do not use it if it appears damaged.
- Check the test leads for continuity, damaged insulation, or exposed metal. Replace damaged test leads.
- When using probes, keep fingers behind the finger guards on the probes.
- Make sure the battery door is closed before using the Calibrator.
- Never apply more than 30.0 V between the input terminals, or between any terminal and earth ground.
- Applying more than 30.0 V to the input terminals invalidates the 718Ex Calibrator's Ex Approval and may result in permanent damage to the unit so it can no longer be used.
- Use the proper terminals, mode, and range for the measuring or sourcing application.
- When making connections, connect the COM test probe before the live test probe. When disconnecting, disconnect the live probe before the COM probe.
- Never use the 718Ex Calibrator with the red holster removed.
- Never open the 718Ex Calibrator case. Opening the case invalidates the Calibrator's Ex Approval.
- Replace the battery as soon as the **H** (low battery) symbol appears to avoid false readings that can lead to electric shock. Remove the 718Ex Calibrator from the Exhazardous area before opening the battery door.
- Use only type 9 V batteries, properly installed in the meter case, to power the meter. For the 718Ex, refer to "718Ex Approved Batteries".

- Remove test leads from the Calibrator before opening the battery door.
- When servicing the Calibrator, use only specified replacement parts.
- Do not allow water inside the case.
- When using the Calibrator's internal pressure sensor, do not connect a pressure module at the Calibrator to avoid misleading readings. If both a pressure module and the internal pressure sensor are connected, the Calibrator displays ONLY the pressure module measurement. To avoid misleading readings, disconnect the pressure module connector at the Calibrator.
- Remove test leads or attached thermocouple miniplug (714 only) from the calibrator before opening the battery door.
- Do not operate the calibrator around explosive gas, vapor or dust.
- 713, 716, 717 30G, 717 100G, 718 30G and 718 100G, and 718Ex 30G and 718Ex 100G only: To avoid a violent release of pressure in a pressurized system, shut off the valve and slowly bleed off the pressure before you attach or detach the calibrator pressure fitting to the pressure line.
- For 718 (non-Ex) only: Use only two 9 V batteries, properly installed in the calibrator case, to power the calibrator.
- For 717 and 718: Turn off circuit power before connecting the calibrator mA and COM terminals in the circuit. Place calibrator in series with the circuit.

▲Caution

- To prevent damage to the unit under test, be sure the Calibrator is in the correct mode before connecting the test leads.
- The 71X Series Calibrators contain parts that can be damaged by static discharge. If you open the case, follow the standard practices for handling static sensitive devices. Refer to "Static Awareness".
- Models 713, 717 and 718 only: To avoid mechanically damaging the calibrator, do not apply torque between the pressure fitting and the calibrator case. See Figure 1 for the proper use of tools.

- To avoid overpressure damage, do not apply pressure that exceeds limits listed in the Users Manual for the specific product.
- 713, 717 and 718 only: To avoid corrosion in the pressure sensor, use the calibrator only with media compatible with glass, ceramic, silicon, RTV, nitrile, (Buna -N) type 303 stainless steel, and nickel.
- 718 and 718Ex only: To avoid damage to the pump, use with dry air and non-corrosive gases only. Use of the optional Fluke 700-ILF In-Line Filter may help isolate the pump from contaminates.

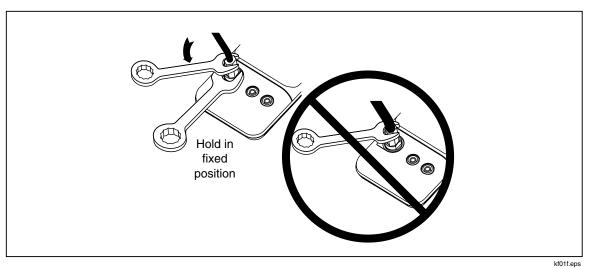


Figure 1. Proper Use of Tools (713, 717, 718, and 718Ex Models)

Explanation of International Symbols

The following symbols are used on the calibrator or in this calibration manual. Table 1 explains their meaning.

Symbol	Meaning			
0	Power ON/OFF			
Ŧ	Earth ground			
	Fuse			
œ	Battery			
	Hazardous Voltage			
▲	Refer to the instrument instruction sheet or Users Manual for information about this feature			
	Double insulated			
c	Conforms to relevant Canadian and US Standards.			
<u></u>	Pressure			
CE	Conforms to European Union directives			
(Ex)	Conforms to ATEX requirements.			

Table 1. International Symbols

Specifications

Specifications for the 71X Calibrators are based on a one-year calibration cycle and apply for ambient temperatures from + 18 °C to + 28 °C unless stated otherwise. "Counts" are the number of increments or decrements of the least significant digit. General specifications for all models are in Table 2.

Table 2. General Specifications				
Maximum voltage applied between any terminal and earth ground or between any two terminals:	30 V			
Storage temperature:	712: -20 °C to 60 °C, 718Ex: -40 °C to 71 °C All other models: -40 °C to 60 °C			
(718Ex) Pressure Sensor Media:	Non-corrosive gasses only			
Operating temperature:	-10 °C to 55 °C			
Operating altitude:	3000 meters maximum			
Relative humidity:	95 % up to 30 °C 75 % up to 40 °C 45 % up to 50 °C 35 % up to 55 °C			
Vibration:	Random 2 g, 5 Hz to 500 Hz			
Shock:	1 meter drop test			
Safety: 712, 713, 714, 715, 716, 717	Certified as compliant to CAN/CSA C22.2 No. 1010.1:1992 NRTL			
Safety: 718	Complies with ANSI/ISA S82.01-1994 Certified as compliant to CAN/CSA C22.2 No. 1010.2:1995 Complies with ANSI/ISA S82.01-1995			
Safety: 718Ex	Certified as compliant to CAN/CSA C22.2 No. 1010.2:1995 Complies with ANSI/ISA S82.01-1995. Complies with IEC 61010-1- 95 CAT I, 30 V;			
	• CE 0344 (Ex) II 1 G EEx ia IIC T4 KEMA 04ATEX1061 X			
	 Class I Div. 1 Groups A-D T4 			
	LR110460 AEx ia IIC T4			
	• Ta = -10 °C +55 °C			
	CE: Complies with EN61010-1 and EN61326			
Power requirements: 712, 713, 714, 715, 716, 717	Single 9 V battery (ANSI/NEDA 1604A or IEC 6LR61)			
Power requirements: 718	Two 9 V batteries (ANSI/NEDA 1604A or IEC 6LR61)			
Power requirements: 718Ex	See "718Ex Approved Batteries".			
Size: 712, 713, 714, 715, 716, 717	34.9 mm H x 87 mm W x 187 mm L; With holster and Flex-Stand: 52 mm H x 98 mm W x 201 mm L			
Size: 718, 718Ex	60 mm H x 87 mm W x 210 mm L; With holster: 66 mm H x 94 mm W x 216 mm L			
Weight: 712 713 714 715 716, 717 30G, 717 100G 718 30G and 718 100G and 718Ex 30G and 718Ex 100G	337 g; With holster and Flex-Stand: 587 g 369 g; With holster and Flex-Stand: 624 g 332 g; With holster and Flex-Stand: 584 g 349 g; With holster and Flex-Stand: 601 g 369 g; With holster and Flex-Stand: 624 g 737 g; With holster: 992G			

Table 2. General Specifications

712 Specifications

712 Calibrator specifications vary based on the version of the instrument. To display the firmware version for your instrument, start with the 712 off, press and hold \bigcirc , then press the power button. Find the section heading below for the displayed version and use the specification tables in that section to test and calibrate the instrument.

Firmware V1.1 and Earlier

RTD	Temperature Range and Resolution	Allowable Excitation ¹
Туре	°C	mA
Ni 120	-80.0 to 260.0	0.15 to 2.00
Pt 100 385	-200.0 to 800.0	0.15 to 2.00
Pt 200 385	-200.0 to 630.0	0.15 to 2.00
Pt 500 385	-200.0 to 630.0	0.05 to 0.80
Pt 1000 385 -200.0 to 630.0		0.05 to 0.40
Pt 100 392 -200.0 to 630.0		0.15 to 2.00
Pt 100 JIS	-200.0 to 630.0 0.15 to 2.00	
	Range and Resolution for Ohms Simulate and Measure	
R ² 15.0 Ω to 400.0 Ω		0.15 to 2.00
R 400.0 Ω to 1500.0 Ω		0.05 to 0.80
R 1500.0 Ω to 3200.0 Ω 0.05 to 0		0.05 to 0.40

Addresses pulsed transmitters and PICs with pulses \geq 100 ms.

1: This column is for simulate mode only. It shows the allowable excitation current from an ohmmeter or RTD measurement device connected to the calibrator.

2: The R annunciator signifies "resistance," not an RTD type. Select it the same way as an RTD type.

Resolution

RTD: 0.1 °C Ohms: 0.1 Ω

Temperature Coefficient

0.005 % of ohms range per °C for temperature ranges -10 °C to 18 °C and 28 °C to 55 °C. Ohms ranges are 400 Ω , 1.5 k Ω , and 3.2 k Ω .

Table 4	712	RTD	and	Ohms	Simulation
---------	-----	-----	-----	------	------------

Ohms Range	Ohms Range Excitation Current from Measurement Device			
15 Ω to 400 Ω	0.15 mA to 0.5 mA	0.15		
15 Ω to 400 Ω	0.5 mA to 2 mA	0.1		
400 Ω to 1.5 kΩ	0.05 mA to 0.8 mA	0.5		
1.5 kΩ to 3.2 kΩ	0.05 mA to 0.4 mA	1		
Maximum input voltage: 30 V				

Ohms Range	Accuracy, Four-Wire $\pm \Omega$
15 Ω to 400 Ω	0.1
400 Ω to 1.5 kΩ	0.5
1.5 kΩ to 3.2 kΩ	1
Maximum input voltage: 30 V Excitation current from 712: 0.3 mA	

Table 5. 712 RTD and Ohms Measurement

Firmware V1.2 through V1.9

			Accuracy (°C)		
RTD Type	Bande (C(E)		Input		Allowable Excitation (mA)
,,		4-Wire	2-Wire & 3-Wire	Output	
Ni 120	-80.0 to 260.0 (-112.0 to 500.0)	0.2	0.3	0.2	0.1 to 3.0
Pt 100 385	-200.0 to 800.0 (-328.0 to 1472.0)	0.33	0.5	0.33	0.1 to 3.0
Pt 200 385	-200.0 to 250.0 (-328.0 to 482.0)	0.2	0.3	0.2	0.1 to 3.0
	250.0 to 630.0 (482.0 to 1166.0)	0.8	1.6	0.8	
Pt 500 385	-200.0 to 500.0 (-328.0 to 932.0)	0.3	0.6	0.3	0.05 to 0.8
	500.0 to 630.0 (932.0 to 1166.0)	0.4	0.9	0.4	
Pt 1000 385	-200.0 to 100.0 (-328.0 to 212.0)	0.2	0.4	0.2	0.05 to 0.4
	100.0 to 630.0 (212.0 to 1166.0)	0.2	0.5	0.2	
Pt 100 392 (3926)	-200.0 to 630.0 (-328.0 to 1166.0)	0.3	0.5	0.3	0.1 to 3.0
Pt 100 JIS (3916)	-200.0 to 630.0 (-328.0 to 1166.0)	0.3	0.5	0.3	0.1 to 3.0

Table 6. RTD Specifications

Addresses pulsed transmitters and PLCs with pulses as short as 5 ms.

Allowable Excitation is for Output mode only. It shows the allowable excitation current from an ohmmeter or RTD measurement device connected to the calibrator.

Excitation current from 712: 0.2 mA.

Maximum input voltage: 30 V

Ohms Range	Input Accuracy 4-Wire ± Ω	Output Accuracy ±Ω	Allowable Excitation (mA)
0 Ω to 400 Ω	0.1	0.15	0.1 to 0.5
		0.1	0.5 to 3.0
400 Ω to 1.5 kΩ	0.5	0.5	0.05 to 0.8
1.5 kΩ to 3.2 kΩ	1	1	0.05 to 0.4

Table 7. Ohms Specifications

Allowable Excitation is for Output mode only. It shows the allowable excitation current from an ohmmeter or RTD measurement device connected to the calibrator.

Excitation current from 712: 0.2 mA.

Maximum input voltage: 30 V

Resolution

RTD: 0.1 °C Ohms: 0.1 Ω Rev 1.3 or Later: $< 400 \Omega 0.01 \Omega$ $> 400 \Omega 0.1 \Omega$

Temperature Coefficient

0.005 % of ohms range per °C for temperature ranges -10 °C to 18 °C and 28 °C to 55 °C. Ohms ranges are 400 Ω , 1.5 k Ω , and 3.2 k Ω .

Firmware V2.0 and Later

			Accuracy (°C) *			
RTD Type	Range °C		Input	Courses	Allowable Excitation (mA)	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4-Wire	2-Wire & 3-Wire	Source		
Ni 120	-80.0 to 260.0	0.20	0.25	0.2	0.1 to 3.0	
Pt 100 385	-200.0 to 100.0	0.20	0.28	0.2	0.1 to 3.0	
	100.0 to 300.0	0.30	0.40	0.3		
	300.0 to 600.0	0.40	0.52	0.4		
	600.0 to 800.0	0.50	0.65	0.5		
Pt 200 385	-200.0 to 100.0	0.80	1.00	0.8	0.05 to 0.8	
	100.0 to 300.0	0.90	1.15	0.9		
	300.0 to 630.0	1.00	1.20	1.0		
Pt 500 385	-200.0 to 100.0	0.40	0.60	0.4	0.05 to 0.8	
	100.0 to 300.0	0.50	0.75	0.5]	
	300.0 to 630.0	0.60	0.90	0.6		

Table 8. RTD Specifications

Table 8. RTD Specifications (cont.)

		Accuracy (°C) *			Allowable Excitation (mA)
RTD Range °C Type	Input		•		
		4-Wire	2-Wire & 3-Wire	Source	
Pt 1000 385	-200.0 to 100.0	0.20	0.25	0.2	0.05 to 0.4
	100.0 to 300.0	0.30	0.40	0.3	
	300.0 to 630.0	0.40	0.52	0.4	
Pt 100 392	-200.0 to 100.0	0.20	0.28	0.2	0.1 to 3.0
(3926)	100.0 to 300.0	0.30	0.40	0.3	
	300.0 TO 630.0	0.40	0.52	0.4	
Pt 100 JIS	-200.0 to 100.0	0.20	0.28	0.2	0.1 to 3.0
3916	100.0 to 300.0	0.30	0.40	0.3	
	300.0 to 630.0	0.40	0.52	0.4	
Excitation contraction for Maximum in *2-wire: Doe	bulsed transmitters an urrent from 712: 0.2 n put voltage: 30 V es not include lead res umes matched leads	ıA.	es as short as 5 ms.		

Table 9. Ohms Measurement Specifications

Ohmo Bango	Accuracy *			
Ohms Range	4-Wire	2- and 3-wire		
0 Ω to 400 Ω	0.025 % ±0.05 Ω	0.025 % ±0.1 Ω		
400 Ω to 4000 Ω	0.025 % ±0.05 Ω	0.025 % ±0.55 Ω		
Excitation current: 0.2 mA.				
Maximum input voltage: 30 V				
*2-wire: Does not include lead resistance 3-wire: Assumes matched leads				

Table 10. Ohms Source Specifications

Ohms Range	Excitation Current from Measurement Device	Accuracy
5 to 400 Ω	0.1 to 0.5 mA	0.025 % ±0.1 Ω
5 to 400 Ω	0.5 to 3.0 mA	0.025 % ±0.05 Ω
400 to 1500 Ω	0.05 to 0.8 mA	0.025 % ±0.5 Ω
1500 to 4000 Ω	0.05 to 0.4 mA	0.025 % ±0.5 Ω

Resolution

RTD: 0.1 °C Ohms: 0.1 Ω Rev 1.3 or Later: $< 400 \Omega 0.01 \Omega$ $> 400 \Omega 0.1 \Omega$

Temperature Coefficient

0.005 % of ohms range per °C for temperature ranges –10 °C to 18 °C and 28 °C to 55 °C. Ohms ranges are 400 Ω , 1.5 k Ω , and 4.0 k Ω .

713 Specifications

Table 11. 713 30G Pressure Input

Firmware Version*	Range	Accuracy	
V1.2 or earlier	0 to 30 psi (206.85 kPa)	±0.05 % of range	
V1.3 or later	-12 psi (82.74 kPa) to 30 psi (206.85 kPa)	\pm 0.05 % of range	
Maximum nondestructive pressure: 3X top of range (90 psi, 620 kPa, 6.2 bar) Temperature coefficient: 0.01 % of range per °C for temperature ranges -10 °C to 18 °C and 28 °C to 55 °C * To display the firmware version, start with the 713 off, press and hold MAX, then press the power button.			

Table 12. 713 100G Pressure Input

Firmware Version*	Range	Accuracy		
V1.2 or earlier	0 to 100 psi (689.5 kPa)	\pm 0.05 % of range		
V1.3 or later	\pm 0.05 % of range			
Maximum nondestructive pressure: 2X top of range (200 psi, 1380 kPa, 13.8 bar) Temperature coefficient: 0.01% of range per °C for temperature ranges -10 °C to 18 °C and 28 °C to 55 °C * To display the firmware version, start with the 713 off, press and hold MAX, then press the power button.				

Displayed Pressure Units	Model 713 30G Range and Resolution	Model 713 100G Range and Resolution
psi	30.000 psi	100.00 psi
inH ₂ O at 4 °C	830.4 inH ₂ O	2768.0 inH₂O
inH ₂ O at 20 °C	831.9 inH ₂ O	2772.9 inH ₂ O
cmH₂O at 4 °C,	2109.0 cmH ₂ O	7030 cmH ₂ O
cmH₂O at 20 °C	2113.0 cmH ₂ O	7043 cmH ₂ O
bar	2.0685 bar	6.895 bar
mbar	2068.5 mbar	6895 mbar
kPa	206.85 kPa	689.5 kPa
inHg	61.080 inHg	203.6 inHg
mmHg	1551.3 mmHg	5171 mmHg
kg/cm ²	2.1090 kg/cm ²	7.030 kg/cm ²

Table 13. 713 Pressure Range and Resolution

Table 14. 713 30G and 713 100G DC mA Input

Range	Resolution	Accuracy, ±(% of Reading + Counts)	
24 mA	0.001 mA	0.025 + 1	
Overload protection: 125 mA, 250 V fast acting fuse Temperature coefficient: 0.005 % of range per °C for temperature ranges – 10 °C to 18 °C and 28 °C to 55 °C			

714 Specifications

714 Calibrator specifications vary based on the version of the instrument. To display the firmware version for your instrument, start with the 714 off, press and hold $\textcircled{\bullet}$, then press the power button. Find the section heading below for the displayed version and use the specification tables in that section to test and calibrate the instrument.

Firmware Earlier than v2.0

ТС Туре	Resolution	Error	Reference Junction Error	
J, K, T, E, L, U	0.1 °C	\pm (0.3 °C + 10 μ V)	± 0.2 °C	
B, R, S	1 °C	\pm (0.3 °C + 10 μ V)	± 0.2 °C	
Maximum input voltage: 30 V Temperature Coefficient: 0.05 x specified accuracy per °C for temperature ranges – 10 °C to 18 °C and 28 °C to 55 °C				

Range	Resolution	Accuracy
-10 mV to 75 mV	0.01 mV	± (0.025 % of range (75 mV) + 1 count)
Maximum input voltage: 30 V	·	•

Table 16. 714 Millivolt Measure and Source

Firmware V2.0 and Later

Туре	Range °C	Accuracy °C *
J	-210.0 to 0.0	0.6
• _	0.0 to 800.0	0.4
	800.0 to 1200.0	0.5
κ	-200.0 to 0.0	0.8
	0.0 to 1000.0	0.5
	1000.0 to 1372.0	0.7
-	-250.0 to 0.0	0.8
	0.0 to 400.0	0.4
E	-250.0 to -100.0	0.8
	-100.0 to 1000.0	0.4
3	-20.0 to 0.0	2.0
	0.0 to 1787.0	1.4
S	-20.0 to 0.0	2.0
	0.0 to 1767.0	1.4
3	600.0 to 800.0	1.4
	800.0 to 1000.0	1.5
	1000.0 to 1820.0	1.7
L	-200.0 to 0.0	0.45
	0.0 to 900.0	0.4
J	-200.0 to 0.0	0.7
	0.0 to 600.0	0.45

Table 17. 714 Temperature Measure and Thermocouple Simulate

 Table 18. 714 Millivolt Measure and Source

Range	Resolution	Accuracy
-10 mV to 75 mV	0.001 mV	0.015 % ± 10 μV
Maximum input voltage: 30 V Maximum source current is 1.0 mA		

715 Specifications

715 Calibrator specifications vary based on the version of the instrument. To display the firmware version for your instrument, start with the 715 off, press and hold $\textcircled{\bullet}$, then press the power button. Find the section heading below for the displayed version and use the specification tables in that section to test and calibrate the instrument.

Firmware Earlier than V2.0

Table 1	9.715	DC V	Input and	I Output
---------	-------	------	-----------	----------

Range	Resolution	Accuracy, ± (% of Reading + Counts)
100 mV	0.01 mV	0.02 % + 2
10 V	0.001 V	0.02 % + 2
Input impedance: 2 MΩ (nominal), < 100 pF Overvoltage protection: 30 V Voltage drive capability: 1 mA		

Table 20. 715 DC mA Input and Output

Range	Resolution	Accuracy, ± (% of Reading + Counts)	
24 mA	0.001 mA	0.02 % + 2	
Overload protection: 125 mA, 250 V fast acting fuse mA Output: 0 % = 4 mA, 100 % = 20 mA			

Temperature Coefficient

0.005 % of ohms range per °C for temperature ranges – 10 °C to 18 °C and 28 °C to 55 °C

Source mode

Compliance: 1000 Ω at 20 mA for battery voltage \geq 6.8 V (700 Ω at 20 mA for battery voltage 5.8 to 6.8 V)

Simulate mode

External loop voltage requirement: 24 V nominal, 30 V maximum, 12 V minimum

Loop Power

 $24~V\pm10~\%$

Firmware 2.0 and Later

Table 21. 715 DC \	/ Input and Output
--------------------	--------------------

Range	Resolution	Accuracy, ± (% of Reading + Counts)
200 mV	0.01 mV	0.015 % + 2
20 V output	0.001 V	0.01 % + 2
25 V input	0.001 V	0.01 % + 2
Input impedance: 1 MΩ (nominal) Overvoltage protection: fuseless Voltage drive capability: 1 mA	, < 100 pF	

Table 22. 715 DC mA Input and Output

Range	Resolution	Accuracy, ± (% of Reading + Counts)	
24 mA	0.001 mA	0.01 % + 2	
Overload protection: fuseless			

Temperature Coefficient

0.005 % of ohms range per °C for temperature ranges – 10 °C to 18 °C and 28 °C to 55 °C

Source mode

Compliance: 1000 Ω at 20 mA for battery voltage \geq 6.8 V (700 Ω at 20 mA for battery voltage 5.8 to 6.8 V)

Simulate mode

External loop voltage requirement: 24 V nominal, 30 V maximum, 12 V minimum

Loop Power

24 V Nominal

716 Specifications

Table 23. 716 Pressure Display, Pressure Module Input				
Range	Resolution	Accuracy		

Table 23. 716 Pressure Display, Pressure Module Input

(determined by pressure module)

Table 24. 716 DC mA Input

Range	Resolution	Accuracy, ± (% of Reading + Counts)	
24 mA	0.001 mA	0.025 + 1	
Overload protection: 125 mA, 250 V fast acting fuse Temperature coefficient: 0.005 % of range per °C for temperature ranges -10 °C to 18 °C and 28 °C to 55 °C			

Loop Supply

24 V ±10%

717 Specifications

Accuracy is specified for 1 year after calibration at operating temperatures of -10 °C to + 55 °C. To display firmware version, start with the unit off and press and hold \overline{MAX} , then press 0.

Pressure

		Version 1.2 or Low	er	
Model	Range SI	Range Metric	Max SI	Max Metric
717-30 G	(0 to 30) PSI	0 to 206.85 kPa	90 PSI	620 kPa
		Version 1.3 or High	er	
Model	Range SI	Range Metric	Max SI	Max Metric
717-1G	(-1 to 1) PSI	(-7 to 7) kPa	5 PSI	34.5 kPa
717-30G	(-12 to 30) PSI	(-83 to 207) kPa	60 PSI	413 kPa
717-100G	(-12 to 100) PSI	(-83 to 690) kPa	200 PSI	1379 kPa or 1.4 mPa
717-300G	(-12 to 300) PSI	(-83 to 2068) kPa or 2.1 mPa	375 PSI	2586 kPa or 2.6 mPa
717-500G	(0 to 500) PSI	3447 kPa or 3.4 mPa	1000 PSI	6895 kPa or 6.9 mPa
717-1000G	(0-1000) PSI	6895 kPa or 6.9 mPa	2000 PSI	13790 kPa or 13.8 mPa
717-1500G	(0-1500) PSI	10342 kPa or 10.3 mPa	3000 PSI	20684 kPa or 20.7 mPa
717-3000G	(0-3000) PSI	20684 kpa or 20.7 mPa	6000 PSI	41369 kPa or 41.4 mPa
717-5000G	(0-5000) PSI	34474 kPa or 34.5 mPa	10000 PSI	68948 kPa or 69 mPa

Table 25. 717 Pressure Specifications

Accuracy: Pressure Accuracy is +/- 0.05% of range

Temperature coefficient: 0.01 % of range per °C for temperature ranges of between –10 °C to 18 °C and 28 °C to 55 °C.

Table 26. Pressure Display, Pressure Module Input

Range	Resolution	Accuracy	
Refer to the Instruction Sheet for the pressure module			

Table 27. DC mA Input

	Range	Resolution	Accuracy,± (% of Reading + Counts)
717 Version 1.2	24 mA	0.001 mA	0.025 + 1
717 Version 1.3	24 mA	0.001 mA	0.015 + 2

	1	30	100	300	500	1000	1500	3000	5000
Range	-1 to 1	-12 to 30	-12 to 100	-12 to 300	0 to 500	0 to 1000	0 to 1500	0 to 3000	0 to 5000
psi	1.0000	30.000	100.00	300.00	500.00	1000.0	1500.0	3000.0	5000.0
bar	0.0689	2.0684	6.8947	20.684	34.474	68.947	103.42	206.84	344.74
mbar	68.948	2068.4	6894.8	20684	34474	68948	NA	NA	NA
kPa	6.8948	206.84	689.48	2068.4	3447.4	6894.8	10342	20684	34474
kg/cm2	0.0703	2.1092	7.0307	21.092	35.153	70.307	105.46	210.92	351.53
cmH2O@ 4 °C	70.309	2109.3	7030.9	21093	35154	70309	NA	NA	NA
cmH2O@ 20 °C	70.434	2113.0	7043.4	21130	35217	70434	NA	NA	NA
inH2O@ 4 °C	27.681	830.42	2768.1	8304.2	13840	27681	41521	83042	NA
inH2O@ 20 °C	27.730	831.89	2773.0	8318.9	13865	27730	41595	83189	NA
mmHg@ 0 °C	51.715	1551.5	5171.5	15515	25858	51715	NA	NA	NA
inHg@ 0 °C	2.0360	61.081	203.60	610.81	1018.0	2036.0	3054.0	6108.1	10180

Table 28. 717 Range and Resolution

Overload Protection

Fuseless overvoltage protection

Temperature Coefficient

0.005 % of range per °C for temperature ranges of between -10 °C to 18 °C and 28 °C to 55 °C.

Loop Supply

24 V dc nominal

Pressure Module Input

Determined by pressure module

718 and 718Ex Specifications

Accuracy is specified for 1 year after calibration at operating temperatures of -10 °C to + 55 °C.

To display firmware version, start with the unit off, press and hold MAX, then press \odot .

For version 1.3 or higher						
Model	Range SI	Range Metric	Max SI	Max Metric		
718-1G	(-1 to 1) PSI	(-7 to 7) kPa	5 PSI	34.5 kPa		
718-30G	(-12 to 30) PSI	(-83 to 207) kPa	60 PSI	413 kPa		
718-100G	(-12 to 100) PSI	(-83 to 690) kPa	200 PSI	1379 kPa or 1.4 mPa		
718-300G	(-12 to 300) PSI	(-83 to 2068) kPa or 2.1 mPa	375 PSI	2586 kPa or 2.6 mPa		
Accuracy: Pressure Accuracy is +/- 0.05% of range Temperature coefficient: .01 % of range per °C for temperature ranges of between -10 °C to 18 °C and 28 °C to 55 °C.						

Table 29. Pressure Specifications

Table 30. Pressure Display, Pressure Module Input

Range	Resolution	Accuracy
Refer to the Instruction Sheet for the pressure module		

Table 31. DC mA Input

	Range	Resolution	Accuracy, \pm (% of Reading + Counts)
718: Version 1.2	24 mA	0.001 mA	0.025 + 1
718: Version 1.3	24 mA	0.001 mA	0.015 + 2
718 EX	24 mA	0.001 mA	0.02 + 2

	1	30	100	300
Range	-1 to 1	-12 to 30	-12 to 100	-12 to 300
psi	1.0000	30.000	100.00	300.00
bar	0.0689	2.0684	6.8947	20.684
mbar	68.948	2068.4	6894.8	20684
kPa	6.8948	206.84	689.48	2068.4
kg/cm2	0.0703	2.1092	7.0307	21.092
cmH2O@ 4 °C	70.309	2109.3	7030.9	21093
cmH2O@ 20 °C	70.434	2113.0	7043.4	21130
inH2O@ 4 °C	27.681	830.42	2768.1	8304.2
inH2O@ 20 °C	27.730	831.89	2773.0	8318.9
mmHg@ 0 °C	51.715	1551.5	5171.5	15515
inHg@ 0 °C	2.0360	61.081	203.60	610.81

Table 32. 718 Range and Resolution

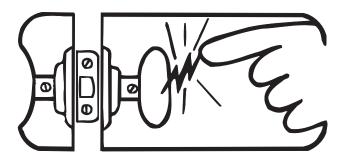
Overload Protection

Fuseless overvoltage protection

Temperature Coefficient

0.005 % of range per °C for temperature ranges of between -10 °C to 18 °C and 28 °C to 55 °C.

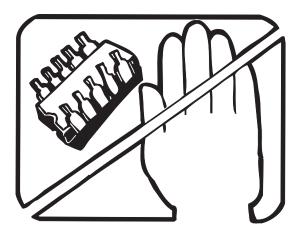
Loop Supply

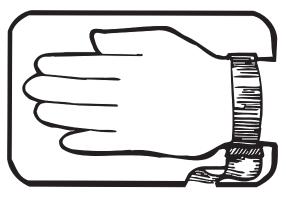

718: 24 V dc nominal

718 EX: No loop Supply

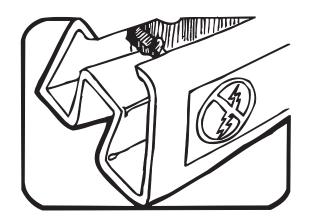
Pressure Module Input

Determined by pressure module

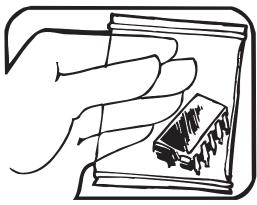


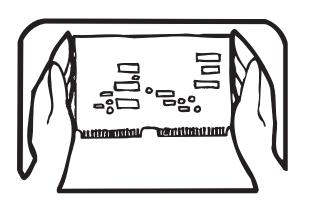

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

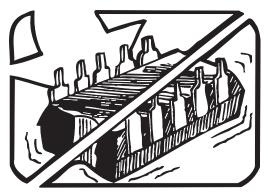
- 1. Knowing that there is a problem.
- 2. Learning the guidelines for handling them.
- 3. Using the procedures, packaging, and bench techniques that are recommended.

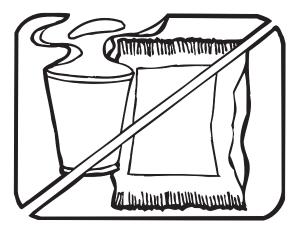

The following practices should be followed to minimize damage to S.S. (static sensitive) devices.

1. MINIMIZE HANDLING

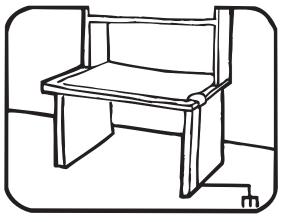

3. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESIS-TANCE GROUNDING WRIST STRAP.


2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOR USE.


4. HANDLE S.S. DEVICES BY THE BODY.


5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT.

8. WHEN REMOVING PLUG-IN ASSEMBLIES HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS PROTECT INSTALLED S.S. DEVICES.



6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE.

7. AVOID PLASTIC, VINYL AND STYROFOAM[®] IN WORK AREA.

PORTIONS REPRINTED WITH PERMISSION FROM TEKTRONIX INC. AND GERNER DYNAMICS, POMONA DIV.

- 9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION.
- 10. ONLY ANTI-STATIC TYPE SOLDER-SUCKERS SHOULD BE USED.
- 11. ONLY GROUNDED-TIP SOLDERING IRONS SHOULD BE USED.

® Dow Chemical

Basic Maintenance

For maintenance procedures not described in this manual, contact an authorized service center.

Cleaning

Periodically wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents.

Replacing the Battery

▲∆Warning

To replace the battery in models 712,713,714,715,716 and 717, refer to Figure 2.

To replace batteries in model 718 models, refer to Figure 3.

To replace the battery in model 718Ex, refer to Figure 4 and "718Ex Approved Batteries".

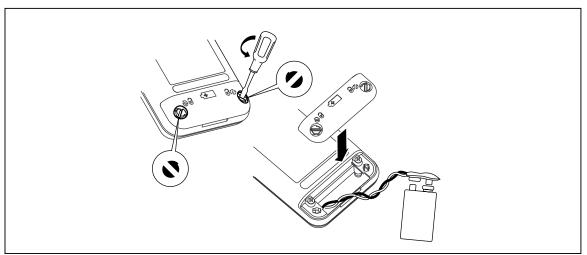


Figure 2. Replacing the Battery

it07i.eps

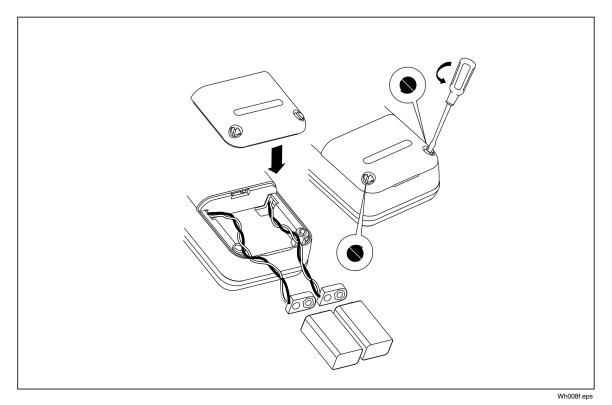


Figure 3. Replacing the Battery (718 only)

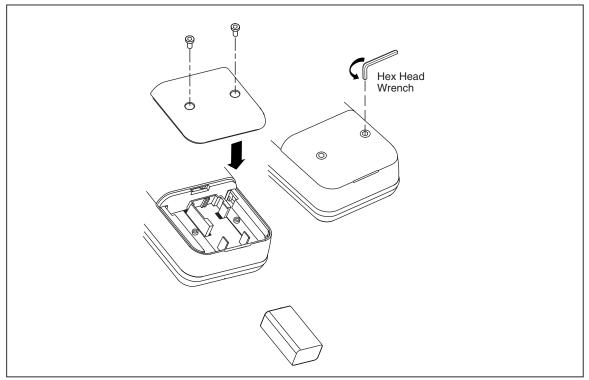


Figure 4. 718Ex Battery Replacement

wh009f.eps

718Ex Approved Batteries

Battery	Manufacturer	Туре
Alkaline, 9 volt	Duracell	6LR61/MN1604
Alkaline Ultra, 9 volt	Duracell	6LR61/MX1604
Alkaline Energizer, 9 volt	Eveready	6LR61/522
Alkaline Power Line Industrial Battery, 9 volt	Panasonic	6LR61.9V

Replacing the Fuse

▲ ▲ Warning

To avoid personal injury or damage to the calibrator, use only a 0.125A 250V fast fuse, Littelfuse[®] 2AG.

To check if the fuse(s) are blown, refer to Table 33.

Table 33. Verifying a Blown Fuse

Calibrator Model	Determining a Blown Fuse
712 V1.1	Put the calibrator in simulate mode (OUTPUT on the display), and check for proper resistance at the calibrator's OUTPUT terminals. An open or very high impedance suggests fuse F1 is blown.
712 V1.2	Fuse F1 is probably blown if no current comes from the center jacks when in input 2W mode. Fuse F2 is probably blown when output mode will not work.
712 ≥V2.0	Fuseless overvoltage protection.
713 Series 716 717 Series <v1.9 718 Series <v1.9< td=""><td>Fuse F1 is probably blown if the mA measurement display reading does not respond to current applied to the current (mA) inputs.</td></v1.9<></v1.9 	Fuse F1 is probably blown if the mA measurement display reading does not respond to current applied to the current (mA) inputs.
717 Series ≥V2.0 718 Series ≥V2.0	Fuseless overvoltage protection.
714 <v1.9< td=""><td>Fuse F1 is probably blown if, in the input mode, the calibrator always reads OL, even with a thermocouple connected.</td></v1.9<>	Fuse F1 is probably blown if, in the input mode, the calibrator always reads OL, even with a thermocouple connected.
714 ≥V2.0	Fuseless overvoltage protection.
715	 Fuse F1 is probably blown if: in the mA input mode, the calibrator always reads 0.000, even with a signal applied. in the mA output mode, with a short across the mA OUTPUT jacks, OL is flashing on the display. Fuse F2 is probably blown if:
	 in the V output mode, with the test leads removed from the calibrator, the display flashes OL. in the V input mode, the calibrator always displays OL, even with a signal applied that is within the measurement range.
715 ≥V2.0	Fuseless overvoltage protection.
718Ex	No user serviceable fuse. An open fuse voids safety certification. The unit should be returned to Fluke for repair.

Replace the fuse(s) as follows, refer to Figures 5 and 6:

- 1. Remove the test leads and turn the calibrator off.
- 2. Remove the battery door.
- 3. Remove the three Phillips-head screws from the case bottom and turn the case over.
- 4. Gently lift the top cover from the end nearest the input jacks until it unsnaps from the bottom cover.
- 5. Replace the fuse(s) with a 0.125 A 250 V fast fuse, Littelfuse[®] type 2AG. F1 and F2 are the same type on the 715 and 712 V1.2.
- 6. (712, 714, and 715 only)

Fit the top and bottom covers together, engaging the two snaps. Make sure that the gasket is properly seated. Reinstall the three screws.

(713, 716, 717, and 718 only)

Carefully fit the case top and circuit board assembly together, making sure that the Oring is properly seated between the pressure sensor and the pressure fitting on the case top. Fit the case bottom onto the case top, engaging the two snaps near the display end of the case. Reinstall the three screws.

7. Replace the battery door.

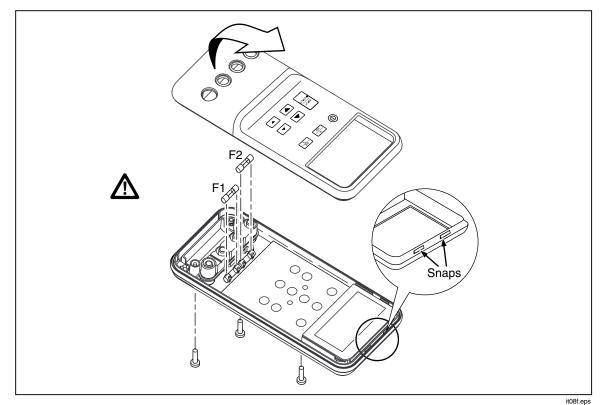


Figure 5. Replacing the Fuses (715 shown)

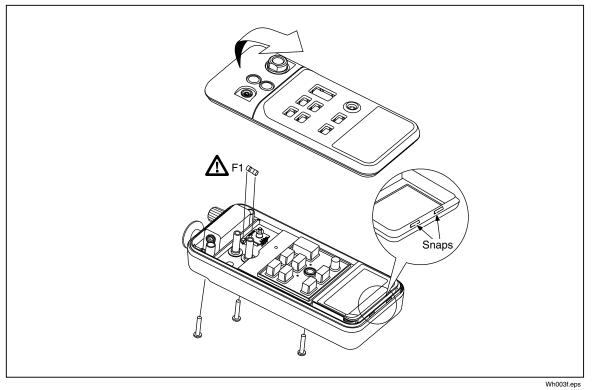


Figure 6. Replacing the Fuse (718 shown)

Required Equipment

The equipment required to perform the verification and calibration procedures in this manual is identified in Table 34.

Calibrator Model	Equipment	Minimum Specifications	Recommended Model
712	DC Calibrator	5 to 3000 Ω Accuracy: 70 ppm + 0.025 Ω	Fluke 5520A
	Reference Multimeter	5 to 3000 Ω Accuracy: 70 ppm + 0.037 Ω	Fluke 8508A
	Four Test Leads		5500A/LEADS
713	DC Calibrator	0 to 24 mA	Fluke 5520A
	Reference Multimeter	0 to 24 mA Accuracy: 0.006 % + 0.25 mA	Fluke 8508A
	Dead Weight Tester	-12 to 100 PSIG Accuracy: 0.012 % of range	
	Teflon Tape		
	Two Test Leads		5500A/LEADS

Table 34. Required Calibration Equipment

Calibrator Model	Equipment	Minimum Specifications	Recommended Model
714	DC Calibrator	-10 to 75 mV Accuracy: 0.006 % + 0.25 mV	Fluke 5520A
	Reference Multimeter	-10 to 75 mV Accuracy: 0.006 % + 0.25 mV	Fluke 8508A
	TC to Banana Test Leads	Copper Mini-Jack to Copper Wire	
	Type J TC Test Lead		5500A/LEADS
715	DC Calibrator	0 to 10 Volts Accuracy: 0.005 % + 0.5 mV	Fluke 5520A
	Reference Multimeter	0 to 10 Volts Accuracy: 0.005 % + 0.5 mV	Fluke 8508A
	Two Test Leads		
716	DC Calibrator	0 to 24 mA	Fluke 5520A
	Reference Multimeter	0 to 24 mA Accuracy: 0.006 % + 0.25 mA	Fluke 8508A
	Two Test Leads		5500A/LEADS
	700P Pressure Module		
	Load Resistors	1 kΩ & 2 kΩ 10% 0.5 W	
717	DC Calibrator	0 to 24 mA	Fluke 5520A
	Reference Multimeter	0 to 24 mA Accuracy: 0.006 % + 0.25 mA	Fluke 8508A
	Dead Weight Tester	-12 to 100 PSIG Accuracy: 0.012 % of range	
	Two Test Leads		5500A/LEADS
	700P Pressure Module		
	Load Resistors	1 kΩ & 2 kΩ 10% 0.5W	
718/718Ex	DC Calibrator	0 to 24 mA	Fluke 5520A
	Reference Multimeter	0 to 24 mA Accuracy: 0.006 % + 0.25 mA	Fluke 8508A
	Dead Weight Tester	-12 to 100 PSIG Accuracy: 0.012 % of range	
	Two Test Leads		5500A/LEADS
	700P Pressure Module		
	Load Resistors	1 kΩ & 2 kΩ 10% 0.5 W	

Verification

The following verification tests check the accuracy of each calibrator function against the calibrator's specifications. If the calibrator fails any of these tests, calibration adjustment or repair is required. Fluke recommends that you calibrate your 71X Calibrator once a year to ensure that it performs according to its specifications.

To perform the verification tests, it is not necessary to open the case or adjust the calibrator. Simply make the required connections, apply the designated source stimulus and determine if the measurements fall within the acceptable range indicated.

Note

Throughout this section, the 71X Calibrator may be referred to as the "UUT" (unit under test).

Preparing for Verification

To prepare for verification, do the following:

- 1. Make sure fuse(s) in the UUT are intact. By referring to Table 33, you should not have to open the unit.
- 2. Make sure you have the required test equipment available. (Refer to Table 34.)
- 3. Turn on and warm up the test equipment for the time required.
- 4. Allow UUT to come to ambient temperature. Turn it on and allow 5 minutes for warm-up of the UUT.

712 Verification (V1.1 and Earlier)

Resistance Measure Verification

1. Press the green ⁽⁽⁾) key to turn on the 712. Press the ⁽⁾/_[] key, the ⁽⁾/_[] key, so that the display indicates:

INPUT TYPE R 4W

- 2. Configure the 712 Calibrator into a 4-wire ohms measurement:
 - Connect two test leads from the NORMAL jacks of the 5520A to the INPUT jacks (two middle jacks) on the 712 Calibrator (black to black, red to red).
 - Connect two additional test leads, also from the NORMAL jacks of the 5520A, to the 712 Calibrator (black wire to the 712 red jack labeled [3W NC] and red wire to the red jack labeled [4W NC]). All four input jacks of the 712 should now be configured in a 4-wire ohms measurement.
- 3. Set the Fluke 5520A to the settings in Table 35, and verify the reading as displayed on the 712 Calibrator:

Fluke 5520A	Fluke 712
207.5 Ω	207.4 to 207.6 Ω
950.0 Ω	949.5 to 950.5 Ω
2350.0 Ω	2349.0 to 2351.0 Ω

Table 35. 712 Resistance Measure Verification

4. Disconnect the test leads.

Resistance Source Verification

- 1. Using four test leads, connect the four jacks of Fluke 8508A (Ω Sense 'Hi & Lo' and Input 'Hi & Lo') to the two middle jacks of the 712 Calibrator (black to black; red to red). This puts the Fluke 8508A in a 4-wire configuration.
- 2. On the Fluke 8508A, select four-wire ohms measurement and up-range to the $1 k\Omega$ range. Use the $1 k\Omega$ range for the first test point, and use the $10 k\Omega$ range for the last two test points. Correct ranging is important in supplying the correct excitation current back into the 712 Calibrator. Otherwise the specifications may change, or the measurements may be incorrect.
- 3. Press the *wey* on the 712 Calibrator so that the display indicates:

OUTPUT

Using the large (\blacktriangle , \checkmark), and small (\checkmark , \checkmark), scroll keys, source the resistance settings in Table 36, verifying the readings on the Fluke 8508A display:

Fluke 712	Fluke 8508A
207.5 Ω	.2074 to .2076 kΩ
950.0 Ω	.9495 to .9505 k Ω
2350.0 Ω	2.349 to 2.351 kΩ

Table 36. 712 Resistance Source Verification

Keypad Test

- 1. Press and hold the large \checkmark to source 950.0 ohms.
- 2. Press and hold the small scroll key. Verify the numbers scrolling on the display changes in 0.1 increments, then changes in 1.0 increments, then in 10.0 increments.
- 3. Press and hold the small 🗢 scroll key. Verify the numbers scrolling on the display changes in 0.1 decrements, then changes in 1.0 decrements, then in 10.0 decrements.
- 4. Disconnect all test leads from the 712 Calibrator and press the key to turn the calibrator off.

Display Verification

- 1. Press and hold the wey and then turn the 712 back on by pressing and releasing the green key. This locks the 712 in a mode where all display segments are on. All segments will stay on until the wey is released.
- 2. Check to see that all segments of the LCD are displayed.
- 3. Turn the 712 off.

The 712 verification test is complete.

712 Verification (V1.2 through V1.9)

- 1. Press with button until Input comes up on the display.
- 2. Press Re until PT100 392 JIS is on the display.
- 3. Press local until 4W is on the display. Set temperature standard to C.
- 4. Set the 5520A to 2-wire output with 2-wire compensation turned off; then make 2wire connections on the 5520A to 4-wire connections on the 712. Set the 5520A to PT 3916 (ITS-90) mode.
- 5. Set the 5520A to output the RTD (resistance) values in Table 37. Verify that the temperature readings are within the limits shown for 4-wire UUT.

5520A Outputs (C)	3-wire 712 Readings (C)	4-wire 712 Readings (C)
-180 (25.799 Ohms)	-179.5 to -180.5	-179.7 to -180.3
100 (139.171 Ohms)	99.5 to 100.5	99.7 to 100.3
550 (300.822 Ohms)	549.5 to 550.5	549.7 to 550.3

Table 37. 712 Verification RTD Values

- 6. Remove the 4-wire connection on the 712 (rightmost connection). Press once and verify that 3W is on the display and that the temperature readings are within the limits shown for 3-wire readings. Press to return to 4W mode.
- 7. Restore the 4-wire connection to the 712 and maintain 2-wire connection on the 5520A.
- 8. Press \mathbb{RPE} until Ω is displayed.
- 9. Set the 5520A to source resistance, to a 2-wire output, with 2-wire compensation turned off.
- 10. Set the 5520A to source the resistance values in Table 38. Verify that the resistance values on the 712 are within the limits shown.

5520A Outputs (Ω)	4-wire 712 Readings (Ω)
5.00	4.90 to 5.10
300.00	299.90 to 300.10
1500.0	1499.5 to 1500.5
30000.0	2999.0 to 3001.0

Table 38. 712 Verification Res	sistance Values
--------------------------------	-----------------

- 11. Make 2-wire connections on the 712 to 4-wire connections on the Fluke 8508A . Set the Fluke 8508A to measure 4-wire resistance.
- 12. Press until OUTPUT is displayed.
- 13. Set the 712 to output the resistance values in Table 39. Verify that the Fluke 8508A readings are within the limits shown.

712 Outputs (Ohms)	Fluke 8508A Readings (Ohms)
5.00	4.90 to 5.10
300.00	299.90 to 300.10
1500.0	1499.5 to 1500.5
30000.0	2999.0 to 3001.0

Table 39. 712 Verification Outputs

14. Disconnect all connections to the 712. The 712 verification test is complete.

712 Verification (V2.0 and Later)

- 1. Press button until Input comes up on the display.
- 2. Press Re until PT100 392 JIS is on the display.
- 3. Press low until 4W is on the display. Set temperature standard to C.
- 4. Set the 5520A to 2-wire output with 2-wire compensation turned off; then make 2wire connections on the 5520A to 4-wire connections on the 712. Set the 5520A to PT 3916 (ITS-90) mode.
- 5. Set the 5520A to output the RTD (resistance) values in Table 40. Verify that the temperature readings are within the limits shown for 4-wire UUT.

5520A Outputs (C)	3-wire 712 Readings (C)	4-wire 712 Readings (C)
-180 (25.799 Ohms)	-179.72 to -180.28	-179.8 to -180.2
100 (139.171 Ohms)	99.6 to 100.4	99.7 to 100.3
300 (213.957 Ohms)	299.7 to 300.3	299.6 to 300.4
550 (300.822 Ohms)	549.48 to 550.52	549.6 to 550.4

Table 40. 712 Verification RTD Values

- 6. Remove the 4-wire connection on the 712 (rightmost connection). Press once and verify that 3W is on the display and that the temperature readings are within the limits shown for 3-wire readings. Press to return to 4W mode.
- 7. Restore the 4-wire connection to the 712 and maintain 2-wire connection on the 5520A.
- 8. Press \mathbb{RP} until Ω is displayed.
- 9. Set the 5520A to source resistance, to a 2-wire output, with 2-wire compensation turned off.
- 10. Set the 5520A to source the resistance values in Table 41. Verify that the resistance values on the 712 are within the limits shown.

5520A Outputs (Ω)	4-wire 712 Readings (Ω)
5.00	4.899 to 5.101
300.00	299.825 to 300.175
1500.0	1499.525 to 1500.475
30000.0	2999.15 to 3000.85

Table 41. 712 Verification Resistance Values

- 11. Make 2-wire connections on the 712 to 4-wire connections on the Fluke 8508A. Set the Fluke 8508A to measure 4-wire resistance.
- 12. Press until OUTPUT is displayed.
- 13. Set the 712 to output the resistance values in Table 42. Verify that the Fluke 8508A readings are within the limits shown.

712 Outputs (Ohms)	Fluke 8508A Readings (Ohms)
5.00	4.899 to 5.101
300.00	299.825 to 300.175
1500.0	1499.525 to 1500.475
30000.0	2999.15 to 3000.85

Table 42. 712 Verification Outputs

14. Disconnect all connections to the 712. The 712 verification test is complete.

713 Verification

Pressure Verification

1. Carefully attach the pressure fitting of the deadweight tester to the pressure port of the 713 Calibrator.

Note

The use of TEFLON tape at the pressure fitting strengthens the seal.

- 2. Press the green ⁽ⁱⁱⁱ⁾ key to turn the 713 on.
- 3. The display should read 0.00 PSI with the deadweight tester opened up to ambient air. If not, press the ZERO key until display does read 0.00 PSI.
- 4. Depending if the instrument being tested is a 713 30G or a 713 100G, set up the deadweight tester for the sequence of PSI inputs from Table 43 to be injected into the pressure port of the 713 Calibrator.
- 5. Ensure the pressure has stabilized at each input before verifying the display reading.
- 6. Carefully vent all pressure and disconnect the 713 from the deadweight tester.

713 30G		713 100G	100G
Input pressure	Display Reading	Input pressure	Display Reading
0 psi	-0.015 to 0.015	0 psi	-0.05 to 0.05
6 psi	5.985 to 6.015	20 psi	19.95 to 20.05
12 psi	11.985 tp 12.015	40 psi	39.95 to 40.05
18 psi	17.985 to 18.015	60 psi	59.95 to 60.05
24 psi	23.985 to 24.015	80 psi	79.95 to 80.05
30 psi	29.985 to 30.015	100 psi	99.95 to 100.05
24 psi	23.985 to 24.015	80 psi	79.95 to 80.05
18 psi	17.985 to 18.015	60 psi	59.95 to 60.05
12 psi	11.985 tp 12.015	40 psi	39.95 to 40.05
6 psi	5.985 to 6.015	20 psi	19.95 to 20.05
-12 psi *	-12.015 to -11.985	-12 psi*	-12.05 to -11.95

Table 43. 713 Pressure Verification

* Vacuum is only specified for V1.3 and later. To display the firmware version, start with the 713 off, press and hold Max, then press the power button.

mA Measure Verification

The display should indicate:

0.000mA 0.00 PSI

- 1. Connect a test lead from Red AUX terminal of the 5520A to the Fluke 8508A I+ terminal.
- 2. Connect a test lead from Black AUX terminal of the 5520A to the 713 Calibrator Com terminal.
- 3. Connect a test lead from I- terminal of the Fluke 8508A to the 713 Calibrator mA terminal.
- 4. Adjust the 5520A if necessary so that the current shown on the Fluke 8508A is the same as the 5520A values shown in Table 44.
- 5. Verify that the display readings on the 713 calibrator are within the limits.

Fluke 5520A	Fluke 713
4.0000 mA	3.998 mA to 4.002 mA
12.0000 mA	11.996 mA to 12.004 mA
24.0000 mA	23.993 mA to 24.007 mA

Table 44. 713 mA Measure Verification

6. Disconnect the test leads and turn off the 713 Calibrator.

Display Verification

- 1. Press and hold the wey and then press and release the green (1) key. This locks the 713 in a mode where all display segments are on. All segments will stay on until the wey is released.
- 2. Check to see that all segments of the display are showing.
- 3. Turn the 713 off.

The 713 verification test is now complete.

714 Verification (Earlier than V2.0)

Thermocouple Measure Verification

1. Press the ^(D) key to turn on the 714 Calibrator. Press the ^(NPUT) key and the ^(C/*F) key so that the display indicates:

INPUT xx.x °C

where xx.x is some variable number; or OL (overload) may be indicated.

- 2. Press the Type J thermocouple and connect the Type J thermocouple test lead from the TC jack of the Fluke 5520A to the TC jack on the 714 Calibrator, observing correct polarity.
- 3. Set the Fluke 5520A to output in Type J thermocouple, press the **OPR** key, and set the 5520A to the settings in Table 45, verifying the display readings on the 714:

Fluke 5520A	Fluke 714
-200.00 °C	-200.9 °C to -199.1 °C
0.00 °C	-0.7 °C to +0.7 °C
1200.00 °C	1199.3 °C to 1200.7 °C

Table 45. 714 Thermocouple Measure Verification

- 4. Disconnect the Type J thermocouple test lead and install the two-wire copper test lead from the Fluke 5520A NORMAL jacks to the 714 Calibrator TC jack, observing correct polarity.
- 5. On the 714 press the $\frac{TC}{TVPE}$ key until "mV" is shown on the display.
- 6. Set the Fluke 5520A to the settings in Table 46, and verify the display readings on the 714 Calibrator.

Table 46. 714 Thermocouple	Measure	Verification	(mA)
----------------------------	---------	--------------	------

Fluke 5520A	Fluke 714
-10.0000 mV	-10.03 to -9.97 mV
30.0000 mV	29.97 to 30.03 mV
75.0000 mV	74.97 to 75.03 mV

7. Disconnect the copper test lead from the Fluke 5520A.

Thermocouple Source Verification

- 1. Set the Fluke 8508A to VDC and 200 mV range. Connect the two-wire copper test lead from the TC jack on the 714 Calibrator to the INPUT jacks of the Fluke 8508A.
- 2. Press the very key on the 714 Calibrator to indicate:

OUPUT 0.00 mV

3. On the 714, press the large ▲ and ▼ scroll keys to source the voltages in Table 47 while verifying the readings on the Fluke 8508A.

Fluke 714	Fluke 8508A
-10.00 mV	-10.028 to -9.972 mV
30.00 mV	29.972 to 30.028 mV
75.00 mV	74.972 to 75.028 mV

Table 47, 71	14 Thermocou	ple Source	Verification	(mA)
			1 of moution	(

- 4. Press the TE key on the 714 Calibrator to TYPE J and disconnect the copper wire test lead.
- 5. Connect the Type J thermocouple test lead from the Fluke 5520A TC jack to the TC jack on the 714 Calibrator, observing correct polarity.
- 6. Set the Fluke 5520A to ^{MEAS}/_{TC} with 'Type J' input. On the 714, press the large ▲ and scroll keys to source the temperatures in Table 48 while verifying the readings on the 5520A:

<u> </u>	
Fluke 714	Fluke 5520A
0.0 °C	-0.70 °C to +0.70 °C
-200.0 °C	-200.94 °C to -199.06 °C
1200 °C	1199.33 °C to 1200.67 °C

Table 48. 714 Thermocouple Source Verification (Temperature)

Keypad Test

- 1. On the 714 Calibrator, press the large \checkmark scroll key to 800.0 °C.
- 2. Press and hold the small scroll key, verifying that the numbers scrolling on the display change in 0.1 increments, then change in 1.0 increments, then change in 10.0 increments.
- 3. Press and hold the scroll key, verifying that the numbers scrolling on the display change in 0.1 decrements, then change in 1.0 decrements, then change in 10.0 decrements.
- 4. Scroll to 800.0 °C.
- 5. Press the CFF key on the 714 Calibrator. The display should change to:

OUTPUT 1472.0 °F

6. Disconnect the Type J test lead from the 714 Calibrator and press the ⁽ⁱ⁾ key to turn the calibrator off.

Display Verification

- 1. Press and hold the wey and then press and release the green (1) key. This locks the 714 in a mode where all display segments are on. All segments will stay on until the wey is released.
- 2. Check to see that all segments of the display are showing.
- 3. Turn the 714 off.

The 714 verification test is now complete.

714 Verification (V2.0 and Later)

Thermocouple Measure Verification

1. Press the (1) key to turn on the 714 Calibrator. Press the (1) key and the C/F key so that the display indicates:

INPUT xx.x °C

where xx.x is some variable number; or OL (overload) may be indicated.

- 2. Press the Type J thermocouple and connect the Type J thermocouple test lead from the TC jack of the Fluke 5520A to the TC jack on the 714 Calibrator, observing correct polarity.
- 3. Set the Fluke 5520A to output in Type J thermocouple, press the **OPR** key, and set the 5520A to the settings in Table 49, verifying the display readings on the 714:

Fluke 5520A	Fluke 714
-200.00 °C	-200.6 °C to -199.4 °C
O° 00.0	-0.4 °C to +0.4 °C
800.00 °C	799.6 °C to 800.4 °C
1200.00 °C	1199.5 °C to 1200.5 °C

Table 49. 714 Thermocouple Measure Verification

- 7. Disconnect the Type J thermocouple test lead and install the two-wire copper test lead from the Fluke 5520A NORMAL jacks to the 714 Calibrator TC jack, observing correct polarity.
- 8. On the 714 press the $\frac{1}{12}$ key until "mV" is shown on the display.
- 9. Set the Fluke 5520A to the settings in Table 50, and verify the display readings on the 714 Calibrator.

Table 50.	714 Thermocouple	Measure	Verification (m/	A)
-----------	------------------	---------	------------------	----

Fluke 5520A	Fluke 714
-10.0000 mV	-10.012 to -9.988 mV
30.0000 mV	29.985 to 30.025 mV
75.0000 mV	74.979 to 75.021 mV

10. Disconnect the copper test lead from the Fluke 5520A.

Thermocouple Source Verification

- 1. Set the Fluke 8508A to VDC and 200 mV range. Connect the two-wire copper test lead from the TC jack on the 714 Calibrator to the INPUT jacks of the Fluke 8508A.
- 2. Press the very key on the 714 Calibrator to indicate:

OUPUT 0.00 mV

3. On the 714, press the large ▲ and ▼ scroll keys to source the voltages in Table 51 while verifying the readings on the Fluke 8508A.

Fluke 714	Fluke 8508A
-10.00 mV	-10.012 to -9.988 mV
30.00 mV	29.985 to 30.025 mV
75.00 mV	74.979 to 75.021 mV

Table 51.	714 Thermocou	ple Source	Verification	(mA)
10010 011			1 of moution	(<i>.</i>

- 4. Press the TE key on the 714 Calibrator to TYPE J and disconnect the copper wire test lead.
- 5. Connect the Type J thermocouple test lead from the Fluke 5520A TC jack to the TC jack on the 714 Calibrator, observing correct polarity.
- 6. Set the Fluke 5520A to ^{MEAS}/_{TC} with 'Type J' input. On the 714, press the large ▲ and scroll keys to source the temperatures in Table 52 while verifying the readings on the 5520A:

Fluke 714	Fluke 5520A	
-200.0 °C	-200.6 °C to -199.4 °C	
0.0 °C	-0.4 °C to +0.4 °C	
800.00 °C	799.6 °C to 800.4 °C	
1200 °C	1199.5 °C to 1200.5 °C	

Table 52. 714 Thermocouple Source Verification (Temperature)

The 714 verification test is now complete.

715 Verification (Earlier than V2.0)

DC Voltage Source Verification

- 1. On the 715 Calibrator turn the green ⁽⁽⁾ key on.
- 2. Press the $\frac{W}{W}$ and the $\frac{W}{W}$ key so that the display indicates:

OUTPUT 0.000 V

- 3. Connect test leads from the Fluke 8508A input HI & LO jacks to the voltage jacks on the 715 Calibrator (black to COM and red to V).
- 4. Using the large scroll button of the 715 Calibrator, press to step to the voltages in Table 53, verifying the output on the Fluke 8508A:

Fluke 715	Fluke 8508A
0.000 V	-0.002 V to +0.002 V
5.000 V	4.997 V to 5.003 V
10.000 V	9.996 V to 10.004 V

5. Press the $\frac{\forall}{m}$ key on the 715 Calibrator. Display should change to:

OUTPUT 0.00 mV

6. Using the large 🔺 key scroll button of the 715 Calibrator, press to step to the voltages in Table 54, verifying the output on the Fluke 8508A.

Table 54. 715 DC Voltage Source Verification (0.00 to 100.00 V)

Fluke 715	Fluke 8508A
0.00 mV	-0.02 mV to + 0.02 mV
50.00 mV	49.97 mV to 50.03 mV
100.00 mV	99.96 mV to 100.04 mV

DC Current Source Verification

1. Disconnect the Fluke 8508A. Press the 👘 key on the 715 Calibrator. The display should change to:

OUTPUT 0.000 mA

- 2. Connect test leads from the 715 Calibrator's mA output jacks (black to V jack and red to +LOOP jack) to the Fluke 8508A input mA jacks (black to I- and red to I+).
- Set the Fluke 8508A function to [DC CURRENT]. Using the large scroll button of the 715 Calibrator, press to step to the current outputs in Table 55, verifying the readings on the Fluke 8508A.

Table 55. 715 DC Current Source Verification

Fluke 715	Fluke 8508A
4.000 mA	3.9972 mA to 4.0028 mA
12.000 mA	11.9956 mA to 12.0044 mA
24.000 mA	23.9932 mA to 24.0068 mA

Keypad Test

- 1. Using the large \bigcirc scroll key, press to step down to 12.000 mA.
- 2. Using the small scroll key, press to verify that the numbers scrolling on the display change in .001 increments; then change in .01 increments; then change in 0.1 increments.
- 3. Using the small \checkmark scroll key, press to verify that the numbers scrolling on the display change in .001 decrements; then change in .01 decrements; then change in 0.1 decrements.
- 4. Scroll to 12.000 mA.
- 5. Press the $\frac{\text{mA}}{\text{5}}$ key on the 715 Calibrator. Display should change to:

OUTPUT 50.00 mA %

DC Current Measure Verification

1. Press were key on the 715 Calibrator. Display should indicate closely to:

INPUT -25.00 mA %

2. Press the $\frac{\text{mA}}{5}$ key and the display should change to:

INPUT 0.000 mA

- 3. Connect a test lead from Red AUX terminal of the 5520A to the Fluke 8508A I+ terminal.
- 4. Connect a test lead from Black AUX terminal of the 5520A to the 715 Calibrator Com terminal.
- 5. Connect a test lead from I- terminal of the Fluke 8508A to the 715 Calibrator mA terminal.
- 6. Adjust the 5520A if necessary so that the current shown on the Fluke 8508A is the same as the 5520A values shown in Table 56.
- 7. Verify that the display readings on the 715 Calibrator are within the limits.

Fluke 5520A	Fluke 715
24.0000 mA	23.993 mA to 24.007 mA
12.0000 mA	11.996 mA to 12.004 mA
4.0000 mA	3.998 mA to 4.002 mA

Table 56. 715 DC Current Measure Verification

DC Voltage Measure Verification

1. Press the \overrightarrow{W} key on the 715 Calibrator. Display should change to:

INPUT 0.000 V

- 2. Connect test leads from the output *NORMAL* jacks of the Fluke 5520A to the voltage jacks on the 715 Calibrator (black to *COM* jack and red to the *V* jack).
- 3. Set the Fluke 5520A for the voltage settings in Table 57, and verify the display readings on the 715 Calibrator.

Table 57.	715 DC	Voltage	Measure	Verification	(10.0000 to	0.0000 V)
1 4 5 1 6 7 1		. onago	moadaro		(1010000 10	0.0000.

Fluke 5520A	Fluke 715
10.00000 V	9.996 V to 10.004 V
5.00000 V	4.997 V to 5.003 V
0.0000 V	-0.002 V to +0.002 V

4. Press the $\overrightarrow{\mathbb{H}}$ key on the 715 Calibrator. Display should indicate closely to:

INPUT 0.00 mV

5. Set the Fluke 5520A for the mV settings in Table 58, and verify display readings on the 715 Calibrator.

Fluke 5520A	Fluke 715
0.0000 mV	-0.02 mV to + 0.02 mV
50.0000 mV	49.97 mV to 50.03 mV
100.0000 mV	99.96 mV to 100.04 mV

6. Disconnect the test leads from 715 Calibrator and turn the green [®] key off.

Display Verification

- 1. Press and hold the we and then turn the 715 back on by pressing and releasing the green (1) key. This locks the 715 in a mode where all display segments are on. All segments will stay on until the we is released.
- 2. Check to see that all segments of the LCD are displayed.
- 3. Turn the 715 off.

The 715 verification test is complete.

715 Verification (V2.0 and Later)

DC Voltage Source Verification

- 1. On the 715 Calibrator turn the green key on.
- 2. Press the $\frac{WPUT}{WT}$ and the $\frac{V}{WV}$ key so that the display indicates:

OUTPUT 0.000 V

- 3. Connect test leads from the Fluke 8508A input HI & LO jacks to the voltage jacks on the 715 Calibrator (black to COM and red to V).
- 4. Using the large scroll button of the 715 Calibrator, press to step to the voltages in Table 59, verifying the output on the Fluke 8508A:

Fluke 715	Fluke 8508A
0.000 V	-0.002 V to + 0.002 V
5.000 V	4.998 V to 5.002 V
15.000 V	14.997 V to 15.003 V

5. Press the \overrightarrow{W} key on the 715 Calibrator. Display should change to:

OUTPUT 0.00 mV

6. Using the large A key scroll button of the 715 Calibrator, press to step to the voltages in Table 60, verifying the output on the Fluke 8508A.

Table 60. 715 DC Voltage Source Verification (0.00 to 200.00 mV)

Fluke 715	Fluke 8508A
0.00 mV	-0.02 mV to + 0.02 mV
50.00 mV	49.98 mV to 50.02 mV
150.00 mV	149.96 mV to 150.04 mV

DC Current Source Verification

1. Disconnect the Fluke 8508A. Press the two on the 715 Calibrator. The display should change to:

OUTPUT 0.000 mA

- 2. Connect test leads from the 715 Calibrator's mA output jacks (black to V jack and red to +LOOP jack) to the Fluke 8508A input mA jacks (black to I- and red to I+).
- Set the Fluke 8508A function to [DC CURRENT]. Using the large scroll button of the 715 Calibrator, press to step to the current outputs in Table 61, verifying the readings on the Fluke 8508A.

Table 61. 715 DC Current Source Verification

Fluke 715	Fluke 8508A
4.000 mA	3.9976 mA to 4.0024 mA
12.000 mA	11.9968 mA to 12.0032 mA
24.000 mA	23.9956 mA to 24.0044 mA

DC Current Measure Verification

1. Press key on the 715 Calibrator. Display should indicate closely to:

```
INPUT -25.00 mA %
```

2. Press the $\frac{mA}{26}$ key and the display should change to:

```
INPUT 0.000 mA
```

- 3. Connect a test lead from Red AUX terminal of the 5520A to the Fluke 8508A I+ terminal.
- 4. Connect a test lead from Black AUX terminal of the 5520A to the 715 Calibrator Com terminal.
- 5. Connect a test lead from I- terminal of the Fluke 8508A to the 715 Calibrator mA terminal.
- 6. Adjust the 5520A if necessary so that the current shown on the Fluke 8508A is the same as the 5520A values shown in Table 62.
- 7. Verify that the display readings on the 715 Calibrator are within the limits.

Fluke 5520A	Fluke 715
24.0000 mA	23.993 mA to 24.007 mA
12.0000 mA	11.996 mA to 12.004 mA
4.0000 mA	3.998 mA to 4.002 mA

Table 62. 715 DC Current Measure Verification

DC Voltage Measure Verification

1. Press the \overrightarrow{H} key on the 715 Calibrator. Display should change to:

INPUT 0.000 V

- 2. Connect test leads from the output *NORMAL* jacks of the Fluke 5520A to the voltage jacks on the 715 Calibrator (black to *COM* jack and red to the *V* jack).
- 3. Set the Fluke 5520A for the voltage settings in Table 63, and verify the display readings on the 715 Calibrator.

, , , , , , , , , , , , , , , , , , ,		
Fluke 5520A	Fluke 715	
20.00000 V	19.996 V to 20.004 V	
10.00000 V	9.997 V to 10.003 V	
0.0000 V	-0.002 V to +0.002 V	

Table 63. 715 DC Voltage Measure Verification (25.0000 to 0.0000 V)

- 4. Press the → key on the 715 Calibrator. Display should indicate closely to:
 INPUT 0.00 mV
- 5. Set the Fluke 5520A for the mV settings in Table 64, and verify display readings on the 715 Calibrator.

Fluke 5520A	Fluke 715
0.0000 mV	-0.02 mV to + 0.02 mV
50.0000 mV	49.98 mV to 50.02 mV
150.0000 mV	149.96 mV to 150.04 mV

6. Disconnect the test leads from 715 Calibrator and turn the green [®] key off.

The 715 verification test is complete.

716 Verification

mA Measure Verification

1. Press the green ⁽ⁱ⁾ button to turn the calibrator on. The display should read:

----- mA

then change to:

0.000 mA

- 2. Connect a test lead from Red AUX terminal of the 5520A to the Fluke 8508A I+ terminal.
- 3. Connect a test lead from Black AUX terminal of the 5520A to the 716 Calibrator Com terminal.
- 4. Connect a test lead from I- terminal of the Fluke 8508A to the 716 Calibrator mA terminal.
- 5. Adjust the 5520A if necessary so that the current shown on the Fluke 8508A is the same as the 5520A values shown in Table 65.
- 6. Verify that the display readings on the 716 Calibrator are within the limits.

Table 65. 716 mA Measure Verification

Fluke 5520A	Fluke 716
4.0000 mA	3.998 mA to 4.002 mA
12.0000 mA	11.996 mA to 12.004 mA
24.0000 mA	23.993 mA to 24.007 mA

7. Disconnect the test leads and press to turn the power off.

mA Loop Power Verification

1. Hold down both LOOP POWER keys (Imits and ⁽ⁱ⁾) at the same time until the screen reads:

----- LOOP mA

then release the keys.

- 2. Apply 1 k Ω to the mA jacks from the decade box or other resistor source. The display should read over 21 mA but less than OL.
- 3. Apply 2 k Ω to the mA jacks from the decade box or other resistor source. The display should read between 11 mA and 13 mA.
- 4. Press 0 to turn the calibrator off.

Sensor Jack Verification

1. Make sure nothing is connected to the sensor port of the Fluke 716. Push (1) to turn the calibrator on. The display should read:

----- mA

then change to:

OL 0.000 mA

2. Plug the Fluke Pressure Module into the sensor port of the Fluke 716. The display should change to:

----- mA

A pressure value should appear on the screen after all of the calibration constants have been downloaded.

3. Disconnect the Fluke Pressure Module and push to turn the Fluke 716 off.

717 Verification

Pressure Verification

1. Carefully attach the pressure fitting of the deadweight tester to the pressure port of the 717 30G Calibrator.

Note

Use Plenty of TEFLON tape when attaching pressure fitting.

The display should read 0.00 PSI with the deadweight tester opened up to ambient air. If not, press the \mathbb{ZERO} key until display reads 0.00 PSI.

- 2. Set up the deadweight tester for the sequence of PSI inputs from Table 66 to be injected into the pressure port of the 717 Calibrator.
- 3. Ensure the pressure has stabilized at each input before verifying the display reading.

7	717 1G		717 30G		
Input Pressure	Display Reading	Input Pressure	Display Reading		
0 psi	0.0005 to -0.0005	0 psi	-0.015 to 0.015		
0.2 psi	0.2005 to 0.1995	6 psi	5.985 to 6.015		
0.4 psi	0.4005 to 0.3995	12 psi	11.985 to 12.015		
0.6 psi	0.6005 to 0.5995	18 psi	17.985 to 18.015		
0.8 psi	0.8005 to 0.7995	24 psi	23.985 to 24.015		
1 psi	1.0005 to 0.9995	30 psi	29.985 to 30.015		
0.8 psi	0.8005 to 0.7995	24 psi	23.985 to 24.015		
0.6 psi	0.6005 to 0.5995	18 psi	17.985 to 18.015		
0.4 psi	0.4005 to 0.3995	12 psi	11.985 to 12.015		
0.2 psi	0.2005 to 0.1995	6 psi	5.985 to 6.015		
-1 psi	-0.9995 to -1.0005	-12 psi *	-12.015 to -11.985		
71	7 100G	71	7 300G		
Input Pressure	Display Reading	Input Pressure	Display Reading		
0 psi	-0.05 to 0.05	0 psi	0.15 to -0.15		
20 psi	19.95 to 20.05	60 psi	60.15 to 59.85		
40 psi	39.95 to 40.05	120 psi	120.15 to 119.85		
60 psi	59.95 to 60.05	180 psi	180.15 to 179.85		
80 psi	79.95 to 80.05	240 psi	240.15 to 239.85		
100 psi	99.95 to 100.05	300 psi	300.15 to 299.85		
80 psi	79.95 to 80.05	240 psi	240.15 to 239.85		
60 psi	59.95 to 60.05	180 psi	180.15 to 179.85		
40 psi	39.95 to 40.05	120 psi	120.15 to 119.85		
20 psi	19.95 to 20.05	60 psi	60.15 to 59.85		
* -12 psi	-12.05 to -11.95	-12 psi	-11.85 to -12.15		
*71	7 500G	71	7 1000G		
Input Pressure	Display Reading	Input Pressure	Display Reading		
0 psi	0.25 to -0.25	0 psi	0.5 to -0.5		
100 psi	100.25 to 99.75	200 psi	200.5 to 199.5		
200 psi	200.25 to 199.75	400 psi	400.5 to 399.5		
300 psi			600.5 to 599.5		
400 psi	400.25 to 399.75 800 psi		800.5 to 799.5		
500 psi	500.25 to 499.75				
400 psi	400.25 to 399.75				
300 psi	300.25 to 299.75				
200 psi	200.25 to 199.75	400 psi	400.5 to 399.5		
100 psi	100.25 to 99.75	200 psi	200.5 to 199.5		

Table 66.	717	Pressure	Verification
-----------	-----	----------	--------------

717 1500G		717 3000G		
Input Display Pressure Reading		Input Pressure	Display Reading	
0 psi	0.8 to -0.8	0 psi	1.5 to -1.5	
300 psi	300.8 to 299.3	600.0 psi	601.5 to 598.5	
600 psi	600.8 to 599.3	1200.0 psi	1201.5 to 1198.5	
900 psi	900.8 to 899.3	1800.0 psi	1801.5 to 1798.5	
1200 psi	1200.8 to 1199.3	2400.0 psi	2401.5 to 2398.5	
1500 psi	1500.8 to 1499.3	3000.0 psi	3001.5 to 2998.5	
1200 psi	1200.8 to 1199.3	2400.0 psi	2401.5 to 2398.5	
900 psi	900.8 to 899.3	1800.0 psi	1801.5 to 1798.5	
600 psi	600.8 to 599.3	1200.0 psi	1201.5 to 1198.5	
300 psi	300.8 to 299.3	600.0 psi	601.5 to 598.5	
	717 50	00G		
Input Pressure		Display Reading		
0 psi		2.5 to -2.5		
1000 psi		1002.5 to 997.5		
	2000 psi	2002.5 to 1997.5		
	3000 psi	3002.5 to 2997.5		
	4000 psi	4002.5 to 3997.5		
5000 psi		5002.5 to 4997.5		
4000 psi		4002.5 to 3997.5		
3000 psi		3002.5 to 2997.5		
2000 psi		2002.5 to 1997.5		
1000 psi		1002.5 to 997.5		

*Vacuum is only specified for V1.3 and later. To display the firmware version, start with the 717 off, press and hold Max, then press the power button.

4. Carefully vent all pressure and disconnect the 717 from the deadweight tester.

mA Measure Verification

1. Press ⁽¹⁾ to turn power on. The display should read:

----- mA

then change to:

0.000 mA 0.00PSI

- 2. Connect a test lead from Red AUX terminal of the 5520A to the Fluke 8508A I+ terminal.
- 3. Connect a test lead from Black AUX terminal of the 5520A to the 717 Calibrator Com terminal.
- 4. Connect a test lead from I- terminal of the Fluke 8508A to the 717 Calibrator mA terminal.

- 5. Adjust the 5520A if necessary so that the current shown on the Fluke 8508A is the same as the 5520A values shown in Table 67.
- 6. Verify that the display readings on the 717 Calibrator are within the limits.

Fluke 5520A	Fluke 717
4.0000 mA	3.998 mA to 4.002 mA
12.0000 mA	11.996 mA to 12.004 mA
24.0000 mA	23.993 mA to 24.007 mA

Table 67. 717 mA Measure Verification

7. Disconnect the test leads and press to turn the power off.

mA Loop Power Verification

1. Hold down both LOOP POWER keys (\fbox and O) at the same until the screen reads:

----- LOOP mA

then release the keys.

- 2. Apply 1 k Ω to the mA jacks from the decade box or other resistor sources. The display should read over 21 mA but less than OL.
- 3. Apply 2 k Ω to the mA jacks from the decade box or other resistor source. The display should read between 11 mA and 13 mA.
- 4. Press ⁽¹⁾ to turn the power off.

Sensor Jack Verification

- 1. Make sure nothing is connected to the sensor port of the Fluke 717.
- 2. Turn power on. The display should read:

----- mA

then change to:

0.000 PSI

3. Plug the Fluke Pressure Module into the sensor port on the Fluke 717. The display should change to:

----- mA

A pressure value should appear on the screen after all of the calibration constants have been down loaded.

4. Disconnect the Fluke Pressure Module and press [®] to turn the Fluke 717 off.

718 and 718Ex Verification

This procedure is appropriate for the 718 and 718Ex. When the steps vary, the step will be labeled (718 Only) or (718Ex Only).

Pressure Verification

∧ ∧ Warning

To avoid a violent release of pressure or vacuum, always depressurize the system slowly using the pressure/vacuum release control before detaching any pressure line. 1. Carefully attach the pressure fitting of the deadweight tester to the pressure port of the Calibrator.

Note

The use of TEFLON tape at the pressure fitting strengthens the seal.

- 2. Press the green ⁽ⁱ⁾ key to turn the calibrator on.
- 3. The display should read 0.00 PSI with the deadweight tester opened up to ambient air. If not, press the ZERO key until display does read 0.00 PSI.
- 4. Depending if the instrument being tested is a 718(Ex) 1G, 30G, 100G, 300G, set up the deadweight tester for the sequence of PSI inputs from Table 68 to be injected into the pressure port of the Calibrator.
- 5. Ensure the pressure has stabilized at each input before verifying the display reading.
- 6. Carefully vent all pressure and disconnect the calibrator from the deadweight tester.

Note

When verifying vacuum pressure make sure the pressure/vacuum switch is in the vacuum position. Forward (clockwise) is for pressure and backward (counter-clockwise) is for vacuum.

718 and 718Ex 1G		718 and 718Ex 30G	
Input Pressure	Display Reading	Input Pressure	Display Reading
0 psi	0.0005 to -0.0005	0 psi	-0.015 to 0.015
0.2 psi	0.2005 to 0.1995	6 psi	5.985 to 6.015
0.4 psi	0.4005 to 0.3995	12 psi	11.985 to 12.015
0.6 psi	0.6005 to 0.5995	18 psi	17.985 to 18.015
0.8 psi	0.8005 to 0.7995	24 psi	23.985 to 24.015
1 psi	1.0005 to 0.9995	30 psi	29.985 to 30.015
0.8 psi	0.8005 to 0.7995	24 psi	23.985 to 24.015
0.6 psi	0.6005 to 0.5995	18 psi	17.985 to 18.015
0.4 psi	0.4005 to 0.3995	12 psi	11.985 to 12.015
0.2 psi	0.2005 to 0.1995	6 psi	5.985 to 6.015
-1 psi	-0.9995 to -1.0005	-12 psi *	-12.015 to -11.985
718 and 718Ex 100G		718 and 718Ex 300G	
Input Pressure	Display Reading	Input Pressure	Display Reading
0 psi	-0.05 to 0.05	0 psi	0.15 to -0.15
20 psi	19.95 to 20.05	60 psi	60.15 to 59.85
40 psi	39.95 to 40.05	120 psi	120.15 to 119.85
60 psi	59.95 to 60.05	180 psi	180.15 to 179.85
80 psi	79.95 to 80.05	240 psi	240.15 to 239.85
100 psi	99.95 to 100.05	300 psi	300.15 to 299.85
80 psi	79.95 to 80.05	240 psi	240.15 to 239.85
60 psi	59.95 to 60.05	180 psi	180.15 to 179.85
40 psi	39.95 to 40.05	120 psi	120.15 to 119.85
		00 i	
20 psi	19.95 to 20.05	60 psi	60.15 to 59.85

Table 68.	718 and 718Ex P	Pressure Verification
-----------	-----------------	-----------------------

*Vacuum is only specified for V1.3 and later. To display the firmware version, start with the 717 off, press and hold MAX, then press the power button.

Leak Test Verification

- 1. Seal off the pressure sensor input port.
- 2. Using the fine adjust knob, pressure-vacuum switch and internal pump, set the calibrator to (approximately) the values in Table 69. Let the unit sit for one minute, then record the displayed value.
- 3. Wait for one more minute, then record a second reading. The difference between the first and the second reading is the leak rate.

718 1G		718 30G	
Adjusted Pressure	Maximum Leak Rate	Adjusted Pressure	Maximum Leak Rate
-1.000 psi		-10.000 psi	
1.000 psi	0.005 psi/min	3.000 psi	0.05 psi/min
		30.000 psi	
718 100G		718 300G	
Adjusted Pressure	Maximum Leak Rate	Adjusted Pressure	Maximum Leak Rate
-10.00 psi		-10.00 psi	
3.00 psi	0.10 psi/min	3.00 psi	0.3 psi/min
100.00 psi		100.00 psi	

Table 69. 718 Leak Test Verification

mA Measure Verification

The display should indicate:

0.000mA 0.00 PSI

- 1. Connect a test lead from Red AUX terminal of the 5520A to the Fluke 8508A I+ terminal.
- 2. Connect a test lead from Black AUX terminal of the 5520A to the Calibrator Com terminal.
- 3. Connect a test lead from I- terminal of the Fluke 8508A to the Calibrator mA terminal.
- 4. Adjust the 5520A if necessary so that the current shown on the Fluke 8508A is the same as the 5520A values shown in Table 70.
- 5. Verify that the display readings on the Calibrator are within the limits.

Fluke 5520A	Fluke 718	Fluke 718Ex
4.0000 mA	3.998 mA to 4.002 mA	3.997 mA to 4.003 mA
12.0000 mA	11.996 mA to 12.004 mA	11.996 mA to 12.004 mA
24.0000 mA	23.993 mA to 24.007 mA	23.993 mA to 24.007 mA

Table 70. 718 and 718Ex mA Measure Verification

6. Disconnect the test leads and turn off the 718 Calibrator.

mA Loop Power Verification (718 Only)

1. Hold down both LOOP POWER keys (\fbox and O) at the same time until the screen reads:

----- LOOP mA

then release the keys.

- 2. Apply 1 k Ω to the mA jacks from the decade box or other resistor source. The display should read over 21 mA but less than OL.
- 3. Apply 2 k Ω to the mA jacks from the decade box or other resistor source. The display should read between 11 mA and 13 mA.

4. Press 0 to turn the calibrator off.

Sensor Jack Verification

1. Make sure nothing is connected to the sensor port of the calibrator. Push to turn the calibrator on. The display should read:

then change to:

0.000

2. Plug the Fluke Pressure Module into the sensor port of the Fluke 718. The display should change to:

A pressure value should appear on the screen after all of the calibration constants have been downloaded.

3. Disconnect the Fluke Pressure Module and push [®] to turn the calibrator off.

Display Verification

- 1. Press and hold the ZERO key and then press and release the green (1) key. This locks the 718 in a mode where all display segments are on. All segments will stay on until the ZERO key is released.
- 2. Check to see that all segments of the display are showing.
- 3. Turn the calibrator off. The 718 and 718Ex verification test is now complete.

Calibration

Re-calibration (obtaining new cal-constants) is required only if a calibrator fails verification. Always re-verify after a re-calibration.

Note

Throughout this section, the 71X Calibrator may be referred to as the "UUT" (unit under test).

Preparing for Calibration

To prepare for calibration, do the following:

- 1. Make sure fuse(s) in the UUT are intact. By referring to Table 33, you should not have to open the unit.
- 2. Make sure you have the required test equipment available. (Refer to Table 34.)
- 3. Turn on and warm up the test equipment for the time required.
- 4. Allow UUT to come to ambient temperature. Turn it on and allow 5 minutes for warm-up of the UUT.

712 Calibration (V1.1 and Earlier)

Millivolts Measure

- 1. Hold down the EVE and the CrF key at the same time, then press and release the line key.
- 2. When the display momentarily shows CAL, release both the *PP* and the *C/F* keys. This puts the 712 into Cal Mode. The 712 should display:

INPUT 0.00 mV

- 3. Connect the test lead from the NORMAL jacks of the Fluke 5520A to the INPUT jacks (two middle jacks) on the 712 Calibrator (black to black, red to red).
- 4. Set the Fluke 5520A to 0.0000 mV and press **OPR**. Press any key on the 712 Calibrator. The display should read:

```
INPUT ----- mV
```

then change to:

```
INPUT 0.00 mV
```

5. Press any key on the 712 Calibrator. The display should read:

```
INPUT ---- mV
```

then change to:

INPUT 160.00 mV

- 6. Set the Fluke 5520A to 160.0000 mV.
- 7. Press any key on the 712 Calibrator. The display should read:

```
INPUT ----- mV then change to:
```

INPUT 320.00 mV

- 8. Set the Fluke 5520A to 320.0000 mV.
- 9. Press any key on the 712 Calibrator. The display should read:

```
INPUT ----- mV
```

then change to:

INPUT 640.00 mV

- 10. Set the Fluke 5520A to 640.000 mV.
- 11. Press any key on the 712 Calibrator. The display should read:

INPUT ----- mV

then change to:

INPUT 1280.00 mV

- 12. Set the Fluke 5520A to 1280.000 mV.
- 13. Press any key on the 712 Calibrator. The display should read:

INPUT ---- mV

then change to:

INPUT 400.00 R 4W

Resistance Measure

- Connect two additional test leads from the NORMAL jacks of the 5520A to the 712 Calibrator (black wire to the 712 red jack labeled [3W NC] and red wire to the red jack labeled [4W NC]. All four input jacks of the 712 should now be in a 4-wire ohms measurement configuration.
- 2. Set the Fluke 5520A to 400.00 Ω and press **OFR**.
- 3. Press any key on the 712 Calibrator. The display should read:

INPUT ----- R 4W

then change to:

```
INPUT -----
```

mA Measure

- 1. Disconnect all four test leads from the Fluke 5520A and the 712 Calibrator.
- 2. Connect the two test leads from the AUX jacks on the Fluke 5520A to the middle jacks on the 712 Calibrator (black to black; red to red).
- 3. Press any key on the 712 Calibrator. The display will change to:

INPUT 0.00 mA

- 4. Set the Fluke 5520A to 0.00000 mA and press **OFR**.
- 5. Press any key on the 712 Calibrator. The display should read:

INPUT ----- mA

then change to:

INPUT 0.00 mA

6. Again, press any key on the 712 Calibrator, still with a 0.00000 mA input from the Fluke 5520A. The display should read:

INPUT ----- mA

then change to:

INPUT 2.000 mA

- 7. Set the Fluke 5520A to 2.00000 mA.
- 8. Press any key on the 712 Calibrator. The display should read:

INPUT ----- mA

then change to:

INPUT 0.500 mA

- 9. Set the Fluke 5520A to 0.50000 mA.
- 10. Press any key on the 712 Calibrator. The display should read:

INPUT ----- mA

11. Press any key on the 712 Calibrator and the unit will automatically reset itself, with all segments momentarily being displayed. Calibrator is now out of CAL mode. Press the ⁽¹⁾ key to turn the calibrator off and disconnect all test leads.

712 Calibration (V1.2 through V1.9)

- 1. Hold down \mathbb{RP} and $\mathbb{C}^{\mathbb{P}}$ while turning the power on.
- 2. Hold the two keys until CAL is displayed, then release the two keys. The display should read:

INPUT 15 Ω

- 3. Connect the two test leads from the NORMAL jacks of the 5520A to the INPUT jacks (two middle jacks) on the 712 Calibrator (black to black, red to red).
- 4. Connect two additional test leads, also from the NORMAL jacks of the 5520A, to the 712 Calibrator (black wire to the 712 red jack labeled [3W NC] and red wire to the red jack labeled [4W NC]). All four input jacks of the 712 should now be configured in a 4-wire ohm measurement.
- 5. Set the Fluke 5520A to 15Ω and press **OPR**.
- 6. Press $\mathbb{C}^{\mathbb{C}}$. The display should read:

INPUT ----- Ω,

then change to:

INPUT 350 Ω

- 7. Set the Fluke 5520A to 350 Ω .
- 8. Press C/F. The display should read:

INPUT ----- Ω

then change to:

INPUT 500 Ω .

- 9. Set the Fluke 5520A to 500 Ω .
- 10. Press C/F. The display should read:

INPUT ----- Ω

then change to:

INPUT 3200 Ω

- 11. Set the Fluke 5520A to 3200 Ω .
- 12. Press °C/°F . The display should read:

INPUT ----- Ω . then change to:

OUTPUT 17-50 Ω.

- Using four test leads, connect the four jacks of Fluke 8508A (Ω Sense 'Hi & Lo' and Input 'Hi & Lo') to the two middle jacks of the 712 Calibrator (black to black; red to red). This puts the Fluke 8508A in a 4-wire configuration.
- 14. Set the 3458A to the 1000 Ω range.
- 15. Press ▲ and ▼ until the 712 display matches the Fluke 8508A.
- 16. Press C^{F} . The display should read:

OUTPUT ----- Ω

then change to:

OUTPUT 350.00 0.

- 17. Press and until the 712 display matches the Fluke 8508A.
- 18. Press °C/°F . The display should read:

OUTPUT ----- Ω

then change to:

OUTPUT 126.00 Ω

- 19. Put the Fluke 8508A in the 10 k Ω range.
- 20. Press and until the 712 display matches the Fluke 8508A.
- 21. Press C/F. The display should read:

 $\mathsf{OUTPUT} \dashrightarrow \Omega$

then change to:

OUTPUT 2535.0 Ω

- 22. Press \frown and \bigcirc until the 712 display matches the Fluke 8508A.
- 23. Press \bigcirc . The display should read:

OUTPUT ----- Ω then the unit will reset.

24. Press the power key to turn the unit off and disconnect the test leads.

712 Calibration (V2.0 and Later)

- 1. Hold down \mathbb{RPP} and \mathbb{CPF} while turning the power on.
- 2. The display shows CAL for 1 second and then xxx, where xxx is the number the times the unit has been through a calibration adjustment. When the two keys are released, PASS is displayed. One second later a zero is displayed for the most significant of the three digit password. Use the two small arrows to change the number. After setting each digit, press $\boxed{C/F}$. If the password entry was correct, the 712 will go into calibration. If the password was wrong, the 712 will go into normal operation mode. The password is 217.
- 3. The calibration will be performed in the following order:

OHMS INPUT OHMS OUTPUT low range OHMS OUTPUT high range

OHMS INPUT

- 1. In OHMS INPUT mode, the unit will display "C 15" for 1 second and then display the OHMS input using the default calibration.
- Connect the test leads from the 5520 main Jacks to the 712 jacks in 4 wire configuration (2 wires at 5520, 4 wires at 712). The unit should read 15.0 Ohms +/-5%.
- 3. Press CPF to go to the next calibration point. "C 400" will be displayed for 1 second and then it will display the ohms input.
- 4. Source 400 Ohms from the 5520. The unit should read 400.0 Ohms +/- 5%.
- 5. Press CF to go to the next calibration point. "C3200" will be displayed for 1 second and then it will display the ohms input.
- 6. Source 3200 Ohms from the 5520. The unit should read 3200.0Ohms +/- 5%.
- 7. Press CPF to complete OHMS INPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the OHMS INPUT calibration can be checked.
- 8. Press C^{+} to go to the next mode.

OHMS OUTPUT Low Range

- 1. In OHMS OUTPUT low range mode, the unit will display "15.00" and will source OHMS using the default calibration.
- 2. Connect the 712 to the DMM in OHMS read using 4 wire mode connection (2 wires at 712, 4 wires at DMM). The DMM should read 15.00 Ohms +/- 5%.
- 3. Adjust the value for OHMS OUTPUT using the arrows on the 712 keypad to source exactly 15.00 Ohms.
- 4. Press C/F to go to the next calibration point. "400.00" will be displayed
- 5. Adjust using the arrows on the keypad to source exactly 400.00 Ohms.

- 6. Press <u>CPF</u> to complete OHMS OUTPUT low range calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the calibration can be checked.
- 7. Press C^{P} to go to the next mode.

OHMS OUTPUT High Range

- 1. In OHMS OUTPUT high range mode, the unit will display "20.0" and will source OHMS using the default calibration. Keep the connections from the previous mode. The DMM should read 20.0 Ohms +/- 5%.
- 2. Adjust the value for OHMS OUTPUT using the arrows on the 712 keypad to source exactly 20.0 Ohms.
- 3. Press \bigcirc to go to the next calibration point. "4000.0" will be displayed.
- 4. Adjust using the arrows on the keypad to source exactly 4000.0 Ohms.
- 5. Press CPF to complete OHMS OUTPUT high range calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the calibration can be checked.
- 6. Press C^{P} to complete calibration.

713 Calibration

mA Measure Measure

- 1. On the 713 Pressure Calibrator hold down both the UNITS and DAMP keys. Press and release the ⁽¹⁾ key.
- 2. When the display momentarily shows CAL, release the UNITS and the keys. This puts the 713 into Cal Mode. The 713 should display:

CAL 0.000 mA

- 3. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 713 Calibrator (black to black and red to red).
- 4. Set the Fluke 5520A to 0.00000 mA and press **OPR**.
- 5. Press any key on the 713 Calibrator. The display should read:

----- 0.000 mA

then change to:

CAL 24.000 mA

- 6. Set the Fluke 5520A to 24.0000 mA.
- 7. Press any key on the 713 Calibrator. The display should read:

----- 24.00 mA

then change to:

rAnGE

Pressure Measure

The 713 Pressure Calibrators have built-in temperature compensation. Instruments being calibrated should be in a stable temperature environment for several minutes before calibration. Calibration facilities should be maintained near 23 °C nominal.

Re-calibration (re-characterization) is performed in terms of 'psi' pressure units. Inputs using other pressure units (ie. kPa and bar) must be mathematically converted.

1. Remove two-wire test lead from the 713 Calibrator and carefully attach the pressure fitting of the deadweight tester to the *pressure* jack on the 713 Calibrator.

Note

The use of TEFLON tape at the pressure fittings strengthens the seal.

At this point, the display should be indicating "rAnGE". This is an indication to choose the correct model of the 713 Calibrator.

2. For 713 30G, press the MIN key. For 713 100G, press the MAX key. The display will flash for a short time:

----- rAnGE then display:

CAL 0.00 PSI

- 3. Vent the system to ambient air to ensure 0.00 PSI.
- 4. Press any key on the 713 Calibrator. The display will change to read:

CAL ----- PSI

then change to:

CAL 30.000 PSI

or

CAL 100.00 PSI

depending on which model /range was selected in step 2.

- 5. Set up the deadweight tester for either 30 PSI or 100 PSI to be injected into the pressure port of the 713 Calibrator.
- 6. Once the pressure has stabilized, press any key on the 713 Calibrator. The display should read:

CAL ----- PSI

then change to:

CAL 15.000 PSI

or

CAL 50.00 PSI

depending on which model /range was previously selected.

- 7. Set the deadweight tester for either 15 PSI or 50 PSI.
- 8. Once the pressure has stabilized, press any key on the 713 Calibrator. The display should read:

CAL ----- PSI

then change to:

0.000mA XX.xx PSI (where XX.xx is the applied pressure) If the display reads CALU, continue to step 9. Otherwise, the 713 Calibrator is no longer in CAL mode, skip to step 11.

9. Press MN to go to vacuum calibration. (Pressing any other key will end the calibration.) If you chose to calibrate vacuum, the display should read:

CAL -12.000 PSI

10. Apply -12 PSI, wait for the vacuum standard to stabilize, then press any key. The display should show:

11. The unit will then reset power. The 713 is now out of the CAL mode and in the normal mode of operation. Vent all pressure/vacuum.

714 Calibration (Earlier than V2.0)

Temperature Measure

- 1. On the 714 Calibrator press and hold the $\overline{\text{TVPE}}$ and $\overline{\text{CC}^{PF}}$ keys, then turn on the 714 by pressing and releasing the @ key.
- 2. When the display momentarily shows CAL, release both the Tree and Cre keys. This puts the 714 into the Cal Mode. The 714 should display:

INPUT 0.00 mV

3. Connect the two-wire copper test lead (banana jacks to mini-connector) from the NORMAL jacks of the Fluke 5520A to the TC jack on the 714 Calibrator, observing correct polarity.

Note

Copper wire must be used during this step.

- 4. Set the Fluke 5520A to 0.0000 mV and press **OPR**.
- 5. Press any key on the 714 Calibrator. The display should read:

INPUT ----- mV

then change to:

INPUT 77.00 mV

- 6. Set the Fluke 5520A to 77.0000 mV.
- 7. Press any key on the 714 Calibrator. The display should read:

INPUT ----- mV

then change to:

```
OUTPUT mV
```

Temperature Source

- 1. Remove the copper test lead from the 714 Calibrator.
- 2. Press any key on the 714 Calibrator. The display should read:

OUTPUT ----- mV

After a few seconds, the display should change to:

TYPE J 0.0 °C

Thermocouple Block Calibration

1. Connect the Type-J thermocouple test lead from the TC jack on the Fluke 5520A to the TC jack on the 714 Calibrator, observing correct polarity.

Note

Type-J thermocouple wire (not copper) must be used.

- 2. Set the Fluke 5520A to source Type-J thermocouple at 0.0 °C. Press **OPR**.
- 3. Press any key on the 714 Calibrator. The display will very quickly flash:

```
TYPE J ----- °C then read:
```

TYPE J HOLD °C

- 4. Wait for three to five minutes. The longer the waiting period, the more accurate the Thermo-block calibration will be.
- 5. Press any key on the 714 Calibrator. The display should read:

TYPE J ----- °C

then change to:

TYPE J 0.xx °C

This number represents the absolute error of the "CJC" sensor and should be below 1° C.

6. Press any key on the 714 Calibrator. The 714 should reset itself, displaying all segments momentarily. The display should then change to:

INPUT xx.x °C

where xx.x is some variable number; or OL (overload) may be indicated.

7. Press the ⁽ⁱ⁾ key to turn the calibrator off and remove the Type J thermocouple test lead.

714 Calibration (V2.0 and Later)

- 1. On the 714 Calibrator press and hold the $\overline{\text{TVPE}}$ and $\overline{\text{CCPF}}$ keys, then turn on the 714 by pressing and releasing the @ key.
- 2. The display shows CAL for 1 second and then xxx, where xxx is the number the times the unit has been through a calibration adjustment. When the two keys are released, PASS is displayed. One second later a zero is displayed for the most significant of the three digit password. Use the two small arrows to change the number. After setting each digit, press the °C/°F key. If the password entry was correct, the 714 will go into calibration. If the password was wrong, the 714 will go into normal operation mode. The password is 417.
- 3. The calibration will be performed in the following order:

mV OUTPUT mV INPUT CJC

mV OUTPUT

- 1. In mV OUTPUT mode, the unit will display "C -10" for 1 second followed by "-10.000". The calibrator is now sourcing mV using the default calibration. The 714 should source approximately -10.000mV through copper wire.
- 2. Adjust the source value using the up and down big arrows for gross and small arrows for fine, until you read -10.000mV.
- 3. Press C/F key to go to the next calibration point. "C 75" will be displayed for 1 second and then "75.000". The 714 should source approximately 75.000mV.
- 4. Adjust the source value until you read 75.000 mV on the DMM.
- 5. Press CPF to complete mV OUTPUT calibration.

mV INPUT

- 1. In mV INPUT mode, the unit will display "C -10" for 1 second and then will display the input voltage using the default calibration.
- 2. Source -10.000 mV from the 5520. The unit should read approximately -10.000 mV through copper wire.

- 3. Press CPF to go to the next calibration point. "C 75" will be displayed for 1 second and then the input voltage.
- 4. Source 75.000 mV from the 5520. The unit should read approximately 75.000 mV.
- 5. Press CPF to complete mV INPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the mV INPUT calibration can be checked.
- 6. Press C^{F} to go to the next mode.

CJC

- 1. In CJC Cal Mode the unit will display "C CJC" for 1 second followed by IN 0°C for another second. Next it will display the difference between the temperature as measured by the CJC sensor and the temperature measured by a J type thermocouple.
- 2. Use the 5520 with J Type thermocouple wire to input a J type thermocouple signal of 0°C with CJC on.
- 3. When the number displayed on the 714 is stable, press the core to complete the calibration.

715 Calibration (Earlier than V2.0)

mA/Volts Measure

- 1. On the 715 Calibrator, hold down the $\frac{M}{m}$ and the $\frac{M}{6}$ keys at the same time, then press and release the @ key.
- 2. When the display momentarily shows CAL , release the w→ and the keys. After CAL shows momentarily, the 715 will display:

INPUT 0.000 mA

- 3. Connect two test leads from the AUX jacks of the Fluke 5520A to the middle mA input jacks on the 715 Calibrator (black to COM jack and red to mA jack).
- 4. Set the Fluke 5520A to 0.00000 mA and press **OPR**.
- 5. Press any key on the 715 Calibrator. The display should read:

INPUT ----- mA

then change to:

INPUT 24.000 mA

- 6. Set the Fluke 5520A to 24.0000 mA.
- 7. Press any key on the 715 Calibrator. The display should read:

INPUT ----- mA

then change to:

INPUT 0.000 V

- 8. Connect test lead from the NORMAL output jacks of the Fluke 5520A to the voltage jacks on the 715 Calibrator (black to COM jack and red to the V jack).
- 9. Set the Fluke 5520A to 0.0000 mV and press **OPR**.
- 10. Press any key on the 715. A relay will click and the display should read:

```
INPUT ----- V
```

then change to:

```
INPUT 10.000 V
```

11. Set the Fluke 5520A to 10.00000 V.

12. Press any key on the 715 Calibrator. The display should read:

INPUT ----- V then change to:

INPUT 0.00 mV

- 13. Set the Fluke 5520A to 0.0000 mV.
- 14. Press any key on the 715 Calibrator. The display should read:

```
INPUT ---- mV
```

then change to:

INPUT 100.00 mV

15. Set the Fluke 5520A to 100.0000 mV.

16. Press any key on the 715 Calibrator. The display should read:

INPUT ---- mV

then change to:

OUTPUT mV

mA/Volts Source Measure

- 1. Remove all test leads from the 715 Calibrator.
- 2. Press any key on the 715 Calibrator. Display should change to:

OUTPUT ----- mV

After a couple of seconds, display should change to:

OUTPUT ----- \boldsymbol{V}

After a couple more seconds, display should change to:

OUTPUT mA

- 3. Take one single test lead and plug one end into the V jack and the other end into the +LOOP jack of the 715 Calibrator (places a short between the two jacks).
- 4. Press any key on the 715 Calibrator. Display should read:

OUTPUT ----- mA

5. The 715 will then reset itself with all segments momentarily being displayed, then change to:

OUTPUT 0.0000 V

The 715 is now out of the CAL mode. Turn the green [®] key to turn the calibrator off.

715 Calibration (V2.0 and Later)

- 1. On the 715 Calibrator, hold down the $\frac{M}{M}$ and the $\frac{M}{M}$ keys at the same time, then press and release the (1) key.
- 2. The display shows CAL for 1 second and then xxx, where xxx is the number the times the unit has been through a calibration adjustment. When the two keys are released, PASS is displayed. One second later, a zero is displayed for the most significant of the three digit password. Use the two small arrows to change the number. After setting each digit, press mthtps://www.mailto.com is displayed. If the password entry was correct, 715 will go into calibration mode and the letter "K" will appear on the display. If the password was wrong, 715 will go into normal operation mode.

3. The calibration will be performed in the following order:

V INPUT mV INPUT mA INPUT V OUTPUT mV OUTPUT mA OUTPUT

V INPUT

- 1. In V INPUT mode, the unit displays "CAL 0" for 1 second followed by the input voltage using the default calibration.
- 2. Connect the test leads from the 5520 main Jacks to the V and COM and source 0.0 V. The unit should read $0.000V \pm 0.010V$.
- 3. Press to go to the next calibration point. "CAL 25" will be displayed for 1 second and then the input voltage.
- 4. Source 25V from the 5520. The unit should read 25.000V with 5% tolerance.
- 5. Press to complete V INPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the V INPUT calibration can be checked.
- 6. Set the 5520 to 0.0 and press mA_% key to go to the next mode.

mV INPUT

- 1. In mV INPUT mode, the unit displays "CAL 0" for 1 second followed by the input voltage using the default calibration.
- 2. Source 0.0 mV from 5520. The unit should read 0.00 mV +/- 0.10 mV.
- 3. Press $\frac{mA}{56}$ to go to the next calibration point. "C 200" will be displayed for 1 second and then the input voltage.
- 4. Source 200mV from the 5520. The unit should read 200.00V with 5% tolerance.
- 5. Press A to complete mV INPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the mV INPUT calibration can be checked.
- 6. Press $\frac{\text{mA}}{\%}$ to go to the next mode

mA INPUT

- 1. In mA INPUT mode, the unit displays "CAL 0" for 1 second followed by the input mA using the default calibration.
- 2. Move the red test lead to mA jack.
- 3. Source 0.0 mA from 5520 using the AUX jacks. The unit should read 0.000mA +/- 0.010mA.
- 4. Press to go to the next calibration point. "CAL24" will be displayed for 1 second and then the input mA.
- 5. Source 24mA from the 5520. The unit should read 24.000mA with 5% tolerance.
- 6. Press to complete mA INPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the mA INPUT calibration can be checked.
- 7. Set the 5520 to STBY mode and press $\frac{mA}{56}$ to go to the next mode.

V OUTPUT

- 1. In V OUTPUT mode, the unit displays "C 0" for 1 second followed by ".0000". The Calibrator is now sourcing V using the default calibration.
- 2. Connect the test leads from V and COM to V and COM ofDMM. The 715 should source 0.000V +/- 0.010V.
- 3. Adjust the source value using the up and down big arrows for gross and small arrows for fine adjustment, until you read 0.000V on the DMM.
- 4. Press to go to the next calibration point. "C 20" will be displayed for 1 second and then ".0000". The 715 should source 20V with 5% tolerance.
- 5. Adjust the source value until you read 20.000 on the DMM.
- 6. Press to complete V OUTPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the V OUTPUT calibration can be checked.
- 7. Press $\frac{\text{mA}}{5}$ to go to the next mode.

mV OUTPUT

- 1. In mV OUTPUT mode, the unit displays "C 0" for 1 second followed by "0.000". The calibrator is now sourcing mV using the default calibration. 715 should source 0.00mV +/- 0.10mV.
- 2. Adjust the source value using the up and down big arrows for gross and small arrows for fine, until you read 0.00mV on the DMM.
- 3. Press TA to go to the next calibration point. "C 200" will be displayed for 1 second and then " 0.000". The 715 should source 200.00mV with 5% tolerance.
- 4. Adjust the source value until you read 200.00 mV on the DMM.
- 5. Press to complete mV OUTPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the mV OUTPUT calibration can be checked.
- 6. Press $\frac{mA}{\%}$ to go to the next mode.

mA OUTPUT

- 1. In mA OUTPUT mode, the unit displays "C 1" for 1 second followe by ".0000". The calibrator is now sourcing mA using the default calibration.
- 2. Connect the test leads from LOOP (red) and V (blak) to mA and COM jacks ofDMM. The 715 should source 1.000mA +/- 0.010mA.
- 3. Adjust the source value using the up and down big arrows for gross and small arrows for fine adjustment, until you read 1.000mA on the DMM.
- 4. Press to go to the next calibration point. "C 21" will be displayed for 1 second and then ".0000". The 715 should source 21mA with 5% tolerance.
- 5. Adjust the source value until you read 21.000mA on the DMM.
- 6. Press to complete mA OUTPUT calibration. "CHEC" will be displayed for 1 second. The new calibration constants are applied and the mA OUTPUT calibration can be checked.
- 7. Press $\frac{\text{mA}}{5}$ to complete the calibration and go to the normal mode.

716 Calibration

mA Measure

1. Hold down the UNITS and the DAMP keys at the same time, then press the green (1) key. When the display shows CAL momentarily, release the UNITS and the DAMP keys immediately. After CAL shows, the display will automatically read:

CAL 0.000mA

- 2. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 716 Calibrator (Black to Black and Red to Red).
- 3. Set the Fluke 5520A to 0.00000 mA and press the **OPR** key.
- 4. Press any key on the 716 Calibrator. The display should change to:

----- 0.000mA

then to:

CAL 24.000mA

- 5. Set the Fluke 5520A to 24.0000 mA.
- 6. Press any key on the 716 Calibrator. Display should change to:

----- 24.000mA

The unit will reset itself. All segments will be displayed momentarily and change to:

----- mA

7. Turn the green ⁽¹⁾ power key OFF and push the ^{STBY} key on the Fluke 5520A.

717 Calibration (Earlier than V2.0)

mA Measure

1. Hold down the <u>UNITS</u> and the <u>DAMP</u> keys at the same time, then press the green ⁽¹⁾ key. When the display shows CAL momentarily, release the <u>UNITS</u> and the <u>DAMP</u> keys immediately. After CAL shows, the display will automatically read:

CAL 0.000mA

- 2. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 717 Calibrator (Black to Black and Red to Red).
- 3. Set the Fluke 5520A to 0.00000 mA and press \overline{OPR} .
- 4. Press any key on the 717 Calibrator. The display should change to:

----- 0.000mA

then to:

CAL 24.000mA

- 5. Set the Fluke 5520A to 24.0000 mA.
- 6. Press any key on the 717 Calibrator. Display should change from:

----- 24.000mA

to:

rAnGE

Pressure Measure

1. Remove test leads from the 717 Calibrator and carefully attach the pressure fitting to the *pressure* jack on the 717 Calibrator.

Note

The use of TEFLON tape at the pressure fittings strengthens the seal.

2. For the 717 100G press the MAX key. For the 717 30G, press the MIN key. The display will flash for a short time:

----- rAnGE

then display:

CAL 0.00 PSI

- 3. Vent the system to ambient air to ensure 0.00 PSI.
- 4. Press any key on the 717 Calibrator. The display will change to read:

CAL ----- PSI

then depending on the model selected in step 2, change to either:

CAL 30.000 PSI

or

CAL 100.00 PSI

- 5. Set up the deadweight tester for 30 PSI (or 100 PSI) to be injected into the pressure port of the 717 Calibrator.
- 6. Once the pressure has stabilized, press any key on the 717 Calibrator. The display should read:

CAL ----- PSI

then depending on the model selected in step 2, change to either:

CAL 15.000 PSI

or

CAL 50.000 PSI

- 7. Set the deadweight tester for 15 PSI (or 50 PSI) to be injected into the pressure port of the 717 calibrator.
- 8. Once the pressure has stabilized, press any key on the 717 Calibrator. The display should read:

CAL ----- PSI

then the calibrator will be out of CAL mode and in OPERATE mode. The display should read:

0.000mA XX.xx PSI (where XX.xx is the applied pressure)

If the display reads CALU, continue to step 9. If the 717 Calibrator is no longer in CAL mode, skip to step 11.

9. Press MN to go to vacuum calibration. (Pressing any other key will end the calibration.) If you chose to calibrate vacuum, the display should read:

CAL -12.000 PSI

10. Apply -12 PSI, wait for the vacuum standard to stabilize, then press any key. The display should show:

^{11.} The unit will then reset power. The 717 is now out of the CAL mode and in the normal mode of operation. Vent all pressure/vacuum.

717 Calibration (V2.0 and Later) mA Measure

Note

For versions 3.00 and later, CLR has changed to MODE.

- 1. Hold down both units and pape on the 717 Pressure Calibrator. Press and release .
- 2. The display shows CAL xxx, as long as wire and wire are pressed. Where xxx is a number, indicating the number of times the 717 has been through the calibration adjustment. When wire and wire are released, PASS is displayed. The password is required before you can enter the calibration mode. The password is 817. Enter the most significant digit first. The password appears below PASS. Use CLF to increase the displayed number, HOLD to decrease it. When the required digit appears, press wire to proceed to the next digit, or the password check. If the password entry was correct, the 717 will go to the CAL mode. If the password is incorrect, BAD PASS shows on the display and then the 717 returns to the normal operation mode. In the CAL mode, the 717 should display:

0.000 mA

in the upper display and

CAL 0 mA

on the lower line of the display.

The upper display shows an uncalibrated reading. This reading is approximately +/-10% of full scale of the applied reading. When <code>DAMP</code> is pressed, the calibration value is calculated relative to this reading. The lower display indicates what function and point is being calibrated.

- 3. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 717 Calibrator (black to black and red to red).
- 4. Set the Fluke 5520A to 0.00000 mA and press **OPR**.
- 5. When 0.0 mA is sourced from the 5520A the upper display indicates about "0.000 mA". When when when the unit establishes the calibration constant for that point and the lower display changes to "CAL 24 mA". The upper display still reflects the applied current so it does not change until after step 6 when 24 mA is applied."
- 6. Set the Fluke 5520A to 24.0000 mA.
- 7. The upper display reads approximately 24.000 mA. Press DAMP on the 717 Calibrator. CHEC appears on the lower display.
- 8. The CHEC mode allows for a quick check of the calibration constants that have just been stored. Changes to the applied current are reflected in the display. Press to continue. The lower display changes to:

rAnGE

Pressure Measure

The 717 Pressure Calibrator has built-in temperature compensation. Instruments being calibrated should be in a stable temperature environment for several minutes before calibration. Calibration facilities should be maintained near 23 °C nominal. Re-calibration (re-characterization) is performed in terms of 'PSI' pressure units. Inputs using other pressure units (ie. kPa and bar) must be mathematically converted.

Note

For versions 3.00 and later, CLR has changed to MODE.

1. Remove two-wire test lead from the 717 Calibrator and carefully attach the pressure fitting of the deadweight tester to the pressure jack on the 717 Calibrator.

Note

The use of TEFLON tape at the pressure fittings strengthens the seal.

2. The lower display shows rAnGE. This is an indication to choose the correct model of the 717 Calibrator. Choose the correct range. The appropriate range for the 717 is as follows:

717 1G (1)	717 300G (300)	717 1500G (1500)
717 30G (30)	717 500G (500)	717 3000G (3000)
717 100G (100)	717 1000G (1000)	717 5000G (5000)

The upper display shows 30, which is the default pressure range. Pressing \boxed{CLR} (\leq version 2.0) changes the sensor range to 100 PSI, pressing \boxed{HOLD} changes it back to 30 PSI. For a \geq version 3.0 press \boxed{MOLE} to uprange, hold to down range. Match the displayed range to the measurement range of the 717.

- 3. After selecting the proper range, press DAMP on the 717 Calibrator.
- 4. Vent the system to ambient air to ensure 0.00 PSI.
- 5. The lower display indicates C 0 PSI and the upper display indicates the current reading. When the unit is vented (step 5) the upper display will read 0.00 +/- approximately 10 % of full scale. When DAMP is pressed, the lower display indicates the next pressure to apply. Apply the requested pressure that shows on the lower display and when the upper reading is stable, press DAMP. Repeat this until CHEC appears on the display.
- 6. The CHEC mode allows for a quick check of the calibration constants that have just been stored. Changes to the applied pressure reflect on the display. Press DAMP to continue. The unit will then reset power.
- 7. The 717 Calibrator is now out of the CAL mode and into the normal mode of operation. Carefully vent all pressure, press (1) to turn the calibrator off, and disconnect all pressure fittings.

718 Calibration (Earlier than V2.0)

mA Measure

- 1. On the 718 Pressure Calibrator hold down both the **DATE** and **DAMP** keys. Press and release the **(D)** key.
- 2. When the display momentarily shows CAL, release the UNITS and the keys. This puts the 718 into Cal Mode. The 718 should display:

CAL 0.000 mA

- 3. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 718 Calibrator (black to black and red to red).
- 4. Set the Fluke 5520A to 0.00000 mA and press **OPR**.
- 5. Press any key on the 718 Calibrator. The display should read:

----- 0.000 mA

then change to:

CAL 24.000 mA

- 6. Set the Fluke 5520A to 24.0000 mA.
- 7. Press any key on the 718 Calibrator. The display should read:
 - ----- 24.00 mA

then change to:

rAnGE

Pressure Measure

The 718 Pressure Calibrators have built-in temperature compensation. Instruments being calibrated should be in a stable temperature environment for several minutes before calibration. Calibration facilities should be maintained near 23 °C nominal.

Re-calibration (re-characterization) is performed in terms of 'psi' pressure units. Inputs using other pressure units (ie. kPa and bar) must be mathematically converted.

1. Remove two-wire test lead from the 718 Calibrator and carefully attach the pressure fitting of the deadweight tester to the *pressure* jack on the 718 Calibrator.

Note

The use of TEFLON tape at the pressure fittings strengthens the seal.

2. At this point, the display should be indicating "rAnGE". This is an indication to choose the correct model of the 718 Calibrator.

For 718 30G, press the $\boxed{\text{MN}}$ key. For 718 100G, press the $\boxed{\text{MAX}}$ key. The display will flash for a short time:

----- rAnGE

then display:

CAL 0.00 PSI

3. Vent the system to ambient air to ensure 0.00 PSI.

Press any key on the 718 Calibrator. The display will change to read:

CAL ----- PSI

then change to:

CAL 30.000 PSI

or

```
CAL 100.00 PSI
```

depending on which model /range was selected in step 2.

5. Set up the deadweight tester for either 30 PSI or 100 PSI to be injected into the pressure port of the 718 Calibrator.

Once the pressure has stabilized, press any key on the 718 Calibrator. The display should read:

CAL ----- PSI

then change to:

CAL 15.000 PSI

or

CAL 50.00 PSI

depending on which model /range was previously selected.

- 6. Set the deadweight tester for either 15 PSI or 50 PSI.
- 7. Once the pressure has stabilized, press any key on the 718 Calibrator. The display should read:

CAL ----- PSI then change to:

CALU

- 8. Release pressure by venting the system.
- 9. Press the MN key to go to vacuum calibration. Otherwise, press any key to finish calibration. If calibrating vacuum, the display should show:

CAL -12.000 PSI

- 10. Make sure the pressure/vacuum switch is in the vacuum position. Forward (clockwise) is for pressure and backward (counter-clockwise) is for vacuum.
- 11. Set up the deadweight tester to apply -12.000 PSI.
- 12. Wait for the pressure standard to stabilize, then press any key.
- 13. The display should show:

- 14. The unit will then reset power.
- 15. The 718 Calibrator is now out of the CAL mode and into the normal mode of operation. Carefully vent all pressure, press the ⁽¹⁾ key to turn the calibrator off, and disconnect all pressure fittings.

718 Calibration (V2.0 and Later)

mA Measure

1. Hold down both units and DAMP on the 718 Pressure Calibrator. Press and release .

Note

For versions 3.00 and later, CLR has changed to MODE.

2. The display shows CAL xxx, as long as with and paper are pressed. Where xxx is a number, indicating the number of times the 718Ex has been through the calibration adjustment. When with and paper are released, PASS is displayed. The password is required before you can enter the calibration mode. The password is 817. Enter the most significant digit first. The password appears below PASS. Use CLR to increase the displayed number, HOLD to decrease it. When the required digit appears, press paper to proceed to the next digit, or the password check. If the password entry was correct, the 718 will go to the CAL mode. If the password is incorrect, BAD PASS shows on the display and then the 718Ex returns to the normal operation mode. In the CAL mode, the 718 should display:

0.000 mA

in the upper display and

CAL 0 mA

on the lower line of the display.

The upper display shows an uncalibrated reading. This reading is approximately +/-10% of full scale of the applied reading. When <code>DAMP</code> is pressed, the calibration value is calculated relative to this reading. The lower display indicates what function and point is being calibrated.

- 3. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 718 Calibrator (black to black and red to red).
- 4. Set the Fluke 5520A to 0.00000 mA and press **OPR**.
- When 0.0 mA is sourced from the 5520A the upper display indicates about "0.000 mA". When we is pushed, the unit establishes the calibration constant for that point and the lower display changes to "CAL 24 mA". The upper display still

reflects the applied current so it does not change until after step 6 when 24 mA is applied."

- 6. Set the Fluke 5520A to 24.0000 mA.
- 7. The upper display reads approximately 24.000 mA. Press DAMP on the 718 Calibrator. CHEC appears on the lower display.
- 8. The CHEC mode allows for a quick check of the calibration constants that have just been stored. Changes to the applied current are reflected in the display. Press to continue. The lower display changes to:

rAnGE

Pressure Measure

The 718 Pressure Calibrator has built-in temperature compensation. Instruments being calibrated should be in a stable temperature environment for several minutes before calibration. Calibration facilities should be maintained near 23 °C nominal. Re-calibration (re-characterization) is performed in terms of 'PSI' pressure units. Inputs using other pressure units (ie. kPa and bar) must be mathematically converted.

Note

For versions 3.00 and later, CLR has changed to MODE.

1. Remove two-wire test lead from the 718 Calibrator and carefully attach the pressure fitting of the deadweight tester to the pressure jack on the 718 Calibrator.

Note

The use of TEFLON tape at the pressure fittings strengthens the seal.

2. The lower display shows rAnGE. This is an indication to choose the correct model of the 718 Calibrator. Choose the correct range. The appropriate range for the 718 is as follows:

718 1G (1)

718 30G (30)

718 100G (100)

718 300G (300)

For unit with V2.0 or less, the upper display shows 30, which is the default pressure range. Pressing CLR changes the sensor range to 100 PSI, pressing HOLD changes it back to 30 PSI. For $a \ge version 3.0$ press where the version 3.0 press where the v

- 3. After selecting the proper range, press $\square AMP$ on the 718Ex Calibrator.
- 4. Vent the system to ambient air to ensure 0.00 PSI.
- 5. The lower display indicates C 0 PSI and the upper display indicates the current reading. When the unit is vented (step 5) the upper display will read 0.00 +/- approximately 10 % of full scale. When DAMP is pressed, the lower display indicates the next pressure to apply. Apply the requested pressure that shows on the lower display and when the upper reading is stable, press DAMP. Repeat this until CHEC appears on the display.
- 6. The CHEC mode allows for a quick check of the calibration constants that have just been stored. Changes to the applied pressure reflect on the display. Press DAMP to continue. The unit will then reset power.

7. The 718 Calibrator is now out of the CAL mode and into the normal mode of operation. Carefully vent all pressure, press (1) to turn the calibrator off, and disconnect all pressure fittings.

718Ex Calibration

mA Measure

- 1. Hold down both units and dame on the 718Ex Pressure Calibrator. Press and release .
- 2. The display shows CAL xxx, as long as with and with are pressed. Where xxx is a number, indicating the number of times the 718Ex has been through the calibration adjustment. When with and with are released, PASS is displayed. The password is required before you can enter the calibration mode. The password is 817. Enter the most significant digit first. The password appears below PASS. Use with to increase the displayed number, with to decrease it. When the required digit appears, press with to proceed to the next digit, or the password check. If the password entry was correct, the 718Ex will go to the CAL mode. If the password is incorrect, BAD PASS shows on the display and then the 718Ex returns to the normal operation mode. In the CAL mode, the 718Ex should display:

0.000 mA

in the upper display and

CAL 0 mA

on the lower line of the display.

The upper display shows an uncalibrated reading. This reading is approximately +/-10% of full scale of the applied reading. When <code>DAMP</code> is pressed, the calibration value is calculated relative to this reading. The lower display indicates what function and point is being calibrated.

- 3. Connect the test leads from the AUX jacks of the Fluke 5520A to the mA jacks on the 718Ex Calibrator (black to black and red to red).
- 4. Set the Fluke 5520A to 0.00000 mA and press **OPR**.
- 5. When 0.0 mA is sourced from the 5520A the upper display indicates about "0.000 mA". When when when the unit establishes the calibration constant for that point and the lower display changes to "CAL 24 mA". The upper display still reflects the applied current so it does not change until after step 6 when 24 mA is applied."
- 6. Set the Fluke 5520A to 24.0000 mA.
- 7. The upper display reads approximately 24.000 mA. Press on the 718Ex Calibrator. CHEC appears on the lower display.
- 8. The CHEC mode allows for a quick check of the calibration constants that have just been stored. Changes to the applied current are reflected in the display. Press to continue. The lower display changes to:

rAnGE

Pressure Measure

The 718Ex Pressure Calibrator has built-in temperature compensation. Instruments being calibrated should be in a stable temperature environment for several minutes before calibration. Calibration facilities should be maintained near 23 °C nominal. Re-calibration (re-characterization) is performed in terms of 'PSI' pressure units. Inputs using other pressure units (ie. kPa and bar) must be mathematically converted.

1. Remove two-wire test lead from the 718Ex Calibrator and carefully attach the pressure fitting of the deadweight tester to the pressure jack on the 718Ex Calibrator.

Note

The use of TEFLON tape at the pressure fittings strengthens the seal.

- 2. The lower display shows rAnGE. This is an indication to choose the correct model of the 718Ex Calibrator. The appropriate range for the 718Ex 30G is 30 and 100 for the 718Ex 100G. Choose the correct range.
- 3. The upper display shows **30**, which is the default pressure range. Pressing CLR changes the sensor range to 100 PSI, pressing HOLD changes it back to 30 PSI.
- 4. After selecting the proper range, press $\square A \square P$ on the 718Ex Calibrator.
- 5. Vent the system to ambient air to ensure 0.00 PSI.
- 6. The lower display indicates C 0 PSI and the upper display indicates the current reading. When the unit is vented (step 5) the upper display will read 0.00 +/- approximately 10 % of full scale. When DAMP is pressed, the lower display indicates the next pressure to apply. Apply the requested pressure that shows on the lower display and when the upper reading is stable, press DAMP. Repeat this until CHEC appears on the display.
- 7. The CHEC mode allows for a quick check of the calibration constants that have just been stored. Changes to the applied pressure reflect on the display. Press DAMP to continue. The unit will then reset power.
- 8. The 718Ex Calibrator is now out of the CAL mode and into the normal mode of operation. Carefully vent all pressure, press (1) to turn the calibrator off, and disconnect all pressure fittings.

Replacement Parts and Accessories

Table 71 lists the replaceable parts and accessories for the 71X Calibrators. See Figure 7 for an exploded view of the 718 Calibrator. Fluke repair is recommended for the 718Ex and no 718Ex replacement parts are listed in Table 71.

Note

Not all parts listed in Table 71 are shown in Figure 7.

Ref. Des.	Description	PN or Model No.	Used On	Qty.
A1	Assembly	690906 691147	718 30G 718 100G	1
BT1, BT2	9V battery, ANSI/NEDA 1604A or IEC 6LR61	614487	71X	1
∆ F1	Fuse, 125 mA, 250V fast	686527	71X	1
▲ F2	Fuse, 125 mA, 250V fast	686527	715	1
H2,3,4	Case screw	832246	71X	3
H5,6	Battery door fasteners	948609	71X	2
H7,8	Bracket screw	641131	718	2
MP1 MP2	LCD Bezel	620242 620259 620267 620275 646866 664000 2545064 663997 1638728 2545073 2545099 2545105 2545110 2545122 2545131 2545047 664158 664169 2545058 686490 686482	712 713 30G 713 100G 714 714 716 717 1G 717 1G 717 30G 717 100G 717 300G 717 500G 717 1000G 717 1500G 717 1500G 717 1500G 717 5000G 718 1G 718 30G 718 30G 718 300G 712,714,715 713,716,717, 718	1
MP6	1G Pump	2571725	718	1
MP6	30G, 100G, 300G Pump Assembly	2558508	718	1
MP7.8	Selector knob	664193	718	2
MP9	Vernier adjust knob	664190	718	1
MP10	Pump handle knob	664185	718	1
MP11,12,13	O-ring, for pressure input	146688	713,717,718	1
MP14	Spacer for pressure input	687449	713,717,718	1
MP20	Shield, LCD, Top Case	687092	71X	1
MP21	LCD Zebra Strip	643376	71X	2
MP22	O-ring for input/output receptacle	831933	712,715	1
				•

Table 71. Replaceable Parts and Accessories

Ref. Des.	Description	PN or Model No.	Used On	Qty.
MP85	Case top	620192 620218 620226 620234 620200 69091 690997 1640322 690997	712 713 30G 713 100G 714 715 716 717 30G 717 100G 718 30G	1
MP86	Case bottom	691147 620168	718 100G 71X	1
IVIF OU		664174	718	1
-	718 1G Top Case Decal	2546993		1
-	718 30G Top Case Decal	2547000		1
-	718 100G Top Case Decal	2547017		1
-	718 300G Top Case Decal	2547021		1
MP89, 90	Non-skid foot	824466	71X	2
MP92	Battery door	609930 664177	71X 718	1
S1	Keypad	687084 687068 687076 687100 2113087	712 713,716,717 714 715 718	1
TM1	712 Instruction Sheet 713 Instruction Sheet 714 Instruction Sheet 715 Instruction Sheet 716 Instruction Sheet 717 30G/100G Instruction Sheet 718 Product Overview Manual 718Ex Control Drawing (CCD)	650280 650298 560306 650314 690008 690013 1549632 6800013	712 713 714 715 716 717 718 718Ex	1
TM2 (not shown)	718 30G/100G Users Manual (on CD) 718Ex 30G/100G Users Manual (on CD)	1549626 2097427	718 718Ex	1
-	Holster, yellow	664182	718	1
-	Test lead, red	688051	712	2
-	Test lead, black	688066	712	2
	ACCESSORIES	S		
AC72	Alligator Clips Red Black	1670641 1670652	713 715 718	1
CG81Y	Holster, Yellow	2074033	71X	1
TL20	Industrial Test Lead Set	1639457	713 715 716 717	Option
TL75	Test lead set	855742	713 715 716 717	1
TM3	71X Series Calibration Manual	686540	71X	Optior

Table 72. Replaceable Parts and Accessories (cont.)

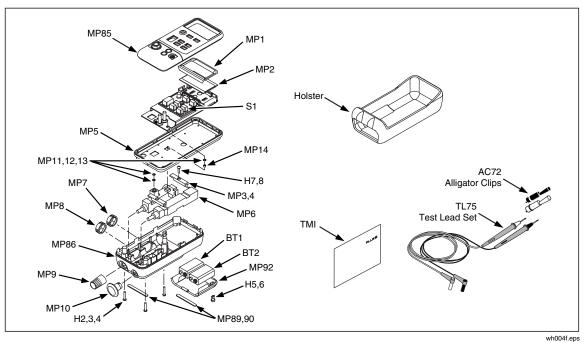


Figure 7. Replacement Parts (718 shown)